AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Investigating molecular orbitals with submolecular precision on pristine sites and single atomic vacancies of monolayer h-BN

Liwei Liu1,2( )Thomas Dienel2,3Gino Günzburger2Teng Zhang1Zeping Huang1Cong Wang4Roland Widmer2Wei Ji4Yeliang Wang1Oliver Gröning2( )
School of Information and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
Empa, Swiss Federal Laboratories for Materials Science and Technology, Duebendorf CH-8600, Switzerland
Department of Materials Science and Engineering, Cornell University and NSF-MIP Platform for the Accelerated Realization, Analysis, and Discovery of Interface Materials (PARADIM), Ithaca, NY 14853, USA
Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872, China
Show Author Information

Graphical Abstract

Abstract

Understanding the influence of adsorption sites to the electronic properties of adsorbed molecules on two-dimensional (2D) ultrathin insulator is of essential importance for future organic-inorganic hybrid nanodevices. Here, the adsorption and electronic states of manganese phthalocyanine (MnPc) on a single layer of hexagonal boron nitride (h-BN) have been comprehensively studied by low-temperature scanning tunneling microscopy/spectroscopy and tight binding calculations. The frontier orbitals of the MnPc can change drastically by reversible manipulation of individual MnPc molecules onto and away from the single atomic vacancies at the h-BN surface. Particularly, the change of the molecular electronic configuration can be controlled depending on whether the atomic vacancy is below the metal center or the ligand of the MnPc. These findings give new insight into defect-engineering of the organic-inorganic hybrid nanodevices down to submolecular level.

Electronic Supplementary Material

Download File(s)
12274_2020_2842_MOESM1_ESM.pdf (2.4 MB)

References

[1]
Gao, L.; Ji, W.; Hu, Y. B.; Cheng, Z. H.; Deng, Z. T.; Liu, Q.; Jiang, N.; Lin, X.; Guo, W.; Du, S. X. et al. Site-specific Kondo effect at ambient temperatures in iron-based molecules. Phys. Rev. Lett. 2007, 99, 106402.
[2]
Papageorgiou, N.; Salomon, E.; Angot, T.; Layet, J. M.; Giovanelli, L.; Lay, G. L. Physics of ultra-thin phthalocyanine films on semiconductors. Prog. Surf. Sci. 2004, 77, 139-170.
[3]
O'Regan, B. C.; López-Duarte, I.; Martínez-Díaz, M. V.; Forneli, A.; Albero, J.; Morandeira, A.; Palomares, E.; Torres, T.; Durrant, J. R. Catalysis of recombination and its limitation on open circuit voltage for dye sensitized photovoltaic cells using phthalocyanine dyes. J. Am. Chem. Soc. 2008, 130, 2906-2907.
[4]
Zhou, H. T.; Zhang, L. Z.; Mao, J. H.; Li, G.; Zhang, Y.; Wang, Y. L.; Du, S. X.; Hofer, W. A.; Gao, H. J. Template-directed assembly of pentacene molecules on epitaxial graphene on Ru(0001). Nano Res. 2013, 6, 131-137.
[5]
Wang, Q. H.; Hersam, M. C. Room-temperature molecular-resolution characterization of self-assembled organic monolayers on epitaxial graphene. Nat. Chem. 2009, 1, 206-211.
[6]
Liu, L. W.; Dienel, T.; Widmer, R.; Gröning, O. Interplay between energy-level position and charging effect of manganese phthalocyanines on an atomically thin insulator. ACS Nano 2015, 9, 10125-10132.
[7]
Dil, H.; Lobo-Checa, J.; Laskowski, R.; Blaha, P.; Berner, S.; Osterwalder, J.; Greber, T. Surface trapping of atoms and molecules with dipole rings. Science 2008, 319, 1824-1826.
[8]
Schulz, F.; Ijäs, M.; Drost, R.; Hämäläinen, S. K.; Harju, A.; Seitsonen, A. P.; Liljeroth, P. Many-body transitions in a single molecule visualized by scanning tunnelling microscopy. Nat. Phys. 2015, 11, 229-234.
[9]
Greber, T.; Auwärter, W.; Hoesch, M.; Grad, G.; Blaha, P.; Osterwalder, J. The Fermi surface in a magnetic metal-insulator interface. Surf. Rev. Lett. 2002, 9, 1243-1250.
[10]
Ćavar, E.; Westerström, R.; Mikkelsen, A.; Lundgren, E.; Vinogradov, A. S.; Ng, M. L.; Preobrajenski, A. B.; Zakharov, A. A.; Mårtensson, N. A single h-BN layer on Pt(111). Surf. Sci. 2008, 602, 1722-1726.
[11]
Gao, C.; Tao, L.; Zhang, Y. Y.; Du, S. X.; Pantelides, S. T.; Idrobo, J. C.; Zhou, W.; Gao, H. J. Spectroscopic signatures of edge states in hexagonal boron nitride. Nano Res. 2019, 12, 1663-1667.
[12]
Tran, T. T.; Bray, K.; Ford, M. J.; Toth, M.; Aharonovich, I. Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol. 2016, 11, 37-41.
[13]
Kim, D. H.; Kim, H. S.; Song, M. W.; Lee, S.; Lee, S. Y. Geometric and electronic structures of monolayer hexagonal boron nitride with multi-vacancy. Nano Converg. 2017, 4, 13.
[14]
Gao, L.; Liu, Q.; Zhang, Y. Y.; Jiang, N.; Zhang, H. G.; Cheng, Z. H.; Qiu, W. F.; Du, S. X.; Liu, Y. Q.; Hofer, W. A. et al. Constructing an array of anchored single-molecule rotors on gold surfaces. Phys. Rev. Lett. 2008, 101, 197209.
[15]
Walzer, K.; Maennig, B.; Pfeiffer, M.; Leo, K. Highly efficient organic devices based on electrically doped transport layers. Chem. Rev. 2007, 107, 1233-1271.
[16]
Craciun, M. F.; Rogge, S.; Morpurgo, A. F. Correlation between molecular orbitals and doping dependence of the electrical conductivity in electron-doped metal-phthalocyanine compounds. J. Am. Chem. Soc. 2005, 127, 12210-12211.
[17]
Ince, M.; Yum, J. H.; Kim, Y.; Mathew, S.; Grätzel, M.; Torres, T.; Nazeeruddin, M. K. Molecular engineering of phthalocyanine sensitizers for dye-sensitized solar cells. J. Phys. Chem. C 2014, 118, 17166-17170.
[18]
Guillaud, G.; Simon, J.; Germain, J. P. Metallophthalocyanines: Gas sensors, resistors and field effect transistors. Coord. Chem. Rev. 1998, 178-180, 1433-1484.
[19]
Sessi, P.; Bathon, T.; Kokh, K. A.; Tereshchenko, O. E.; Bode, M. Probing the electronic properties of individual MnPc molecules coupled to topological states. Nano Lett. 2014, 14, 5092-5096.
[20]
Yang, K.; Xiao, W. D.; Jiang, Y. H.; Zhang, H. G.; Liu, L. W.; Mao, J. H.; Zhou, H. T.; Du, S. X.; Gao, H. J. Molecule-substrate coupling between metal phthalocyanines and epitaxial graphene grown on Ru(0001) and Pt(111). J. Phys. Chem. C 2012, 116, 14052-14056.
[21]
Yang, K.; Xiao, W. D.; Liu, L. W.; Fei, X. M.; Chen, H.; Du, S. X.; Gao, H. J. Construction of two-dimensional hydrogen clusters on Au(111) directed by phthalocyanine molecules. Nano Res. 2014, 7, 79-84.
[22]
Franke, K. J.; Schulze, G.; Pascual, J. I. Competition of superconducting phenomena and kondo screening at the nanoscale. Science 2011, 332, 940-944.
[23]
Jiang, Y. H.; Xiao, W. D.; Liu, L. W.; Zhang, L. Z.; Lian, J. C.; Yang, K.; Du, S. X.; Gao, H. J. Self-assembly of metal phthalocyanines on Pb(111) and Au(111) surfaces at submonolayer coverage. J. Phys. Chem. C 2011, 115, 21750-21754.
[24]
Ouyang, B.; Song, J. Strain engineering of magnetic states of vacancy-decorated hexagonal boron nitride. Appl. Phys. Lett. 2013, 103, 102401.
[25]
Uhlmann, C.; Swart, I.; Repp, J. Controlling the orbital sequence in individual Cu-phthalocyanine molecules. Nano Lett. 2013, 13, 777-780.
[26]
Iannuzzi, M.; Tran, F.; Widmer, R.; Dienel, T.; Radican, K.; Ding, Y.; Hutter, J.; Groning, O. Site-selective adsorption of phthalocyanine on h-BN/Rh(111) nanomesh. Phys. Chem. Chem. Phys. 2014, 16, 12374-12384.
[27]
Grobosch, M.; Mahns, B.; Loose, C.; Friedrich, R.; Schmidt, C.; Kortus, J.; Knupfer, M. Identification of the electronic states of manganese phthalocyanine close to the Fermi level. Chem. Phys. Lett. 2011, 505, 122-125.
[28]
Shen, X.; Sun, L. L.; Benassi, E.; Shen, Z. Y.; Zhao, X. Y.; Sanvito, S.; Hou, S. M. Spin filter effect of manganese phthalocyanine contacted with single-walled carbon nanotube electrodes. J. Chem. Phys. 2010, 132, 054703.
[29]
Yuan, B. K.; Chen, P. C.; Zhang, J.; Deng, K.; Cheng, Z. H.; Wang, C. Topography multiplicity of titanyl phthalocyanine on ultrathin insulating films observed by STM. Chin. Phys. Lett. 2013, 30, 106802.
[30]
Borghetti, P.; El-Sayed, A.; Goiri, E.; Rogero, C.; Lobo-Checa, J.; Floreano, L.; Ortega, J. E.; de Oteyza, D. G. Spectroscopic fingerprints of work-function-controlled phthalocyanine charging on metal surfaces. ACS Nano 2014, 8, 12786-12795.
[31]
Patera, L. L.; Queck, F.; Scheuerer, P.; Moll, N.; Repp, J. Accessing a charged intermediate state involved in the excitation of single molecules. Phys. Rev. Lett. 2019, 123, 016001.
[32]
Yu, A.; Li, S. W.; Dhital, B.; Lu, H. P.; Ho, W. Tunneling electron induced charging and light emission of single panhematin molecules. J. Phys. Chem. C 2016, 120, 21099-21103.
[33]
Repp, J.; Meyer, G.; Paavilainen, S.; Olsson, F. E.; Persson, M. Imaging bond formation between a gold atom and pentacene on an insulating surface. Science 2006, 312, 1196-1199.
[34]
Mielke, J.; Hanke, F.; Peters, M. V.; Hecht, S.; Persson, M.; Grill, L. Adatoms underneath Single Porphyrin Molecules on Au(111). J. Am. Chem. Soc. 2015, 11, 1844-1849.
[35]
Kügel, J.; Karolak, M.; Krönlein, A.; Serrate, D.; Bode, M.; Sangiovanni, G. Reversible magnetic switching of high-spin molecules on a giant Rashba surface. npj Quant. Mater. 2018, 3, 53.
[36]
Zhang, Y. Y.; Du, S. X.; Gao, H. J. Binding configuration, electronic structure, and magnetic properties of metal phthalocyanines on a Au(111) surface studied with ab initio calculations. Phys. Rev. B 2011, 84, 125446.
[37]
Krishnapriyan, A.; Yang, P.; Niklasson, A. M. N.; Cawkwell, M. J. Numerical optimization of density functional tight binding models: Application to molecules containing carbon, hydrogen, nitrogen, and oxygen. J. Chem. Theory Comput. 2017, 13, 6191-6200.
[38]
Dienel, T.; Kawai, S.; Sode, H.; Feng, X. L.; Müllen, K.; Ruffieux, P.; Fasel, R.; Gröning, O. Resolving atomic connectivity in graphene nanostructure junctions. Nano Lett. 2015, 12, 5185-5190.
Nano Research
Pages 2233-2238
Cite this article:
Liu L, Dienel T, Günzburger G, et al. Investigating molecular orbitals with submolecular precision on pristine sites and single atomic vacancies of monolayer h-BN. Nano Research, 2020, 13(8): 2233-2238. https://doi.org/10.1007/s12274-020-2842-5
Topics:

695

Views

5

Crossref

N/A

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 05 November 2019
Revised: 05 April 2020
Accepted: 30 April 2020
Published: 05 August 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return