AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Zn-doping enhances the photoluminescence and stability of PbS quantum dots for in vivo high-resolution imaging in the NIR-II window

Xiulei Shi1Song Chen1Meng-Yao Luo2Biao Huang2Guozhen Zhang3Ran Cui2Mingxi Zhang1( )
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070 Wuhan, China
Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei 230026, China
Show Author Information

Graphical Abstract

Abstract

Lead sulfide (PbS) quantum dots (QDs) are important near infrared (NIR) luminescent materials with tunable and strong emission covering a broad NIR region. However, their optical properties are quite sensitive to air, water, and high temperature due to the surface oxidation, thus limiting their applications in optoelectronic devices and biological imaging. Herein, a cation-doping strategy is presented to make a series of high-quality Zn-doped PbS QDs with strong emission covering whole second near-infrared window (NIR-II, 1,000-1,700 nm). First-principle calculations confirmed that Zn dopants formed dopant states and decreased the recombination energy gap of host PbS. Notably, the Zn dopants significantly improved the quantum yield, photoluminescence lifetime and thermal stability of PbS QDs. Moreover, the PEGylated Zn-doped PbS QDs emitting in the NIR-IIb window (1,500-1,700 nm) realized the noninvasive imaging of cerebral vascular of mouse with high resolution, being able to distinguish blood capillary. This material not only provides a new tool for deep tissue fluorescence imaging, but is also promising for the development of other NIR related devices.

Electronic Supplementary Material

Download File(s)
12274_2020_2843_MOESM1_ESM.pdf (1.6 MB)

References

[1]
Li, Y. X.; Lin, J. D.; Che, X. Z.; Qu, Y.; Liu, F.; Liao, L. S.; Forrest, S. R. High efficiency near-infrared and semitransparent non-fullerene acceptor organic photovoltaic cells. J. Am. Chem. Soc. 2017, 139, 17114-17119.
[2]
Zampetti, A.; Minotto, A.; Cacialli, F. Near-infrared (NIR) organic light-emitting diodes (OLEDs): Challenges and opportunities. Adv. Funct. Mater. 2019, 29, 1807623.
[3]
Miao, J. S.; Hu, W. D.; Guo, N.; Lu, Z. Y.; Liu, X. Q.; Liao, L.; Chen, P. P.; Jiang, T.; Wu, S. W.; Ho, J. C. et al. High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios. Small 2015, 11, 936-942.
[4]
Hong, G. S.; Antaris, A. L.; Dai, H. J. Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng. 2017, 1, 0010.
[5]
Diao, S.; Hong, G. S.; Antaris, A. L.; Blackburn, J. L.; Cheng, K.; Cheng, Z.; Dai, H. J. Biological imaging without autofluorescence in the second near-infrared region. Nano Res. 2015, 8, 3027-3034.
[6]
Bakueva, L.; Gorelikov, I.; Musikhin, S.; Zhao, X. S.; Sargent, E. H.; Kumacheva, E. PbS quantum dots with stable efficient luminescence in the near-IR spectral range. Adv. Mater. 2004, 16, 926-929.
[7]
McDonald, S. A.; Konstantatos, G.; Zhang, S. G.; Cyr, P. W.; Klem, E. J. D.; Levina, L.; Sargent, E. H. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat. Mater. 2005, 4, 138-142.
[8]
Moreels, I.; Lambert, K.; Smeets, D.; De Muynck, D.; Nollet, T.; Martins, J. C.; Vanhaecke, F.; Vantomme, A.; Delerue, C.; Allan, G. et al. Size-dependent optical properties of colloidal PbS quantum dots. ACS Nano 2009, 3, 3023-3030.
[9]
Tang, J.; Kemp, K. W.; Hoogland, S.; Jeong, K. S.; Liu, H.; Levina, L.; Furukawa, M.; Wang, X. H.; Debnath, R.; Cha, D. et al. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat. Mater. 2011, 10, 765-771.
[10]
Benayas, A.; Ren, F. Q.; Carrasco, E.; Marzal, V.; del Rosal, B.; Gonfa, B. A.; Juarranz, Á.; Sanz-Rodríguez, F.; Jaque, D.; García-Solé, J. et al. PbS/CdS/ZnS quantum dots: A multifunctional platform for in vivo Near-infrared low-dose fluorescence imaging. Adv. Funct. Mater. 2015, 25, 6650-6659.
[11]
Supran, G. J.; Song, K. W.; Hwang, G. W.; Correa, R. E.; Scherer, J.; Dauler, E. A.; Shirasaki, Y.; Bawendi, M. G.; Bulovic, V. High-performance shortwave-infrared light-emitting devices using core-shell (PbS-CdS) colloidal quantum dots. Adv. Mater. 2015, 27, 1437-1442.
[12]
Wang, F. F.; Wan, H.; Ma, Z. R.; Zhong, Y. T.; Sun, Q. C.; Tian, Y.; Qu, L. Q.; Du, H. T.; Zhang, M. X.; Li, L. L. et al. Light-sheet microscopy in the near-infrared II window. Nat. Methods 2019, 16, 545-552.
[13]
Zhao, H. G.; Liang, H. Y.; Vidal, F.; Rosei, F.; Vomiero, A.; Ma, D. L. Size dependence of temperature-related optical properties of PbS and PbS/CdS core/shell quantum dots. J. Phys. Chem. C 2014, 118, 20585-20593.
[14]
Moroz, P.; Liyanage, G.; Kholmicheva, N. N.; Yakunin, S.; Rijal, U.; Uprety, P.; Bastola, E.; Mellott, B.; Subedi, K.; Sun, L. F. et al. Infrared emitting PbS nanocrystal solids through matrix encapsulation. Chem. Mater. 2014, 26, 4256-4264.
[15]
Kovalenko, M. V.; Schaller, R. D.; Jarzab, D.; Loi, M. A.; Talapin, D. V. Inorganically functionalized PbS-CdS colloidal nanocrystals: Integration into amorphous chalcogenide glass and luminescent properties. J. Am. Chem. Soc. 2012, 134, 2457-2460.
[16]
Fan, Z. C.; Lin, L. C.; Buijs, W.; Vlugt, T. J. H.; van Huis, M. A. Atomistic understanding of cation exchange in PbS nanocrystals using simulations with pseudoligands. Nat. Comm. 2016, 7, 11503.
[17]
Neo, M. S.; Venkatram, N.; Li, G. S.; Chin, W. S.; Ji, W. Synthesis of PbS/CdS core-shell QDs and their nonlinear optical properties. J. Phys. Chem. C 2010, 114, 18037-18044.
[18]
Boercker, J. E.; Woodall, D. L.; Cunningham, P. D.; Placencia, D.; Ellis, C. T.; Stewart, M. H.; Brintlinger, T. H.; Stroud, R. M.; Tischler, J. G. Synthesis and characterization of PbS/ZnS core/shell nanocrystals. Chem. Mater. 2018, 30, 4112-4123.
[19]
Norris, D. J.; Efros, A. L.; Erwin, S. C. Doped nanocrystals. Science 2008, 319, 1776-1779.
[20]
Zhong, X. H.; Feng, Y. Y.; Knoll, W.; Han, M. Y. Alloyed ZnxCd1-xS nanocrystals with highly narrow luminescence spectral width. J. Am. Chem. Soc. 2003, 125, 13559-13563.
[21]
Zhong, X. H.; Han, M. Y.; Dong, Z. L.; White, T. J.; Knoll, W. Composition-tunable ZnxCd1-xSe nanocrystals with high luminescence and stability. J. Am. Chem. Soc. 2003, 125, 8589-8594.
[22]
Yang, X. L.; Pu, C. D.; Qin, H. Y.; Liu, S. J.; Xu, Z.; Peng, X. G. Temperature- and Mn2+ concentration-dependent emission properties of Mn2+-doped ZnSe nanocrystals. J. Am. Chem. Soc. 2019, 141, 2288-2298.
[23]
He, H.; Lin, Y.; Tian, Z. Q.; Zhu, D. L.; Zhang, Z. L.; Pang, D. W. Ultrasmall Pb: Ag2S quantum dots with uniform particle size and bright tunable fluorescence in the NIR-II window. Small 2018, 14, 1703296.
[24]
Dalpian, G. M.; Chelikowsky, J. R. Self-purification in semiconductor nanocrystals. Phys. Rev. Lett. 2006, 96, 226802.
[25]
Smith, A. M.; Mancini, M. C.; Nie, S. M. Second window for in vivo imaging. Nat. Nanotechnol. 2009, 4, 710-711.
[26]
Kenry; Duan, Y. K.; Liu, B. Recent advances of optical imaging in the second near-infrared window. Adv. Mater. 2018, 30, 1802394.
[27]
Zhang, M. X.; Yue, J. Y.; Cui, R.; Ma, Z. R.; Wan, H.; Wang, F. F.; Zhu, S. J.; Zhou, Y.; Kuang, Y.; Zhong, Y. T. et al. Bright quantum dots emitting at ∼1,600 nm in the NIR-IIb window for deep tissue fluorescence imaging. Proc. Natl. Acad. Sci. USA 2018, 115, 6590-6595.
[28]
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
[29]
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953-17979.
[30]
Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758-1775.
[31]
Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50.
[32]
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.
[33]
Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-Zone integrations. Phys. Rev. B 1976, 13, 5188-5192.
[34]
Yao, J. S.; Ge, J.; Wang, K. H.; Zhang, G. Z.; Zhu, B. S.; Chen, C.; Zhang, Q.; Luo, Y.; Yu, S. H.; Yao, H. B. Few-nanometer-sized α-CsPbI3 quantum dots enabled by strontium substitution and iodide passivation for efficient red-light emitting diodes. J. Am. Chem. Soc. 2019, 141, 2069-2079.
[35]
Chung, W.; Jung, H.; Lee, C. H.; Kim, S. H. Fabrication of high color rendering index white LED using Cd-free wavelength tunable Zn doped CuInS2 nanocrystals. Opt. Express 2012, 20, 25071-25076.
[36]
Tang, X. S.; Ho, W. B. A.; Xue, J. M. Synthesis of Zn-doped AgInS2 nanocrystals and their fluorescence properties. J. Phys. Chem. C 2012, 116, 9769-9773.
[37]
Weidman, M. C.; Beck, M. E.; Hoffman, R. S.; Prins, F.; Tisdale, W. A. Monodisperse, air-stable PbS nanocrystals via precursor stoichiometry control. ACS Nano 2014, 8, 6363-6371.
[38]
Cademartiri, L.; Bertolotti, J.; Sapienza, R.; Wiersma, D. S.; von Freymann, G.; Ozin, G. A. Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals. J. Phys. Chem. B 2006, 110, 671-673.
[39]
Chichibu, S. F.; Hazu, K.; Ishikawa, Y.; Tashiro, M.; Namita, H.; Nagao, S.; Fujito, K.; Uedono, A. Time-resolved photoluminescence, positron annihilation, and Al0.23Ga0.77N/GaN heterostructure growth studies on low defect density polar and nonpolar freestanding GaN substrates grown by hydride vapor phase epitaxy. J. Appl. Phys. 2012, 111, 103518.
[40]
Na, J. H.; Taylor, R. A.; Lee, K. H.; Wang, T.; Tahraoui, A.; Parbrook, P.; Fox, A. M.; Yi, S. N.; Park, Y. S.; Choi, J. W. et al. Dependence of carrier localization in InGaN/GaN multiple-quantum wells on well thickness. Appl. Phys. Lett. 2006, 89, 253120.
[41]
Franke, D.; Harris, D. K.; Chen, O.; Bruns, O. T.; Carr, J. A.; Wilson, M. W. B.; Bawendi, M. G. Continuous injection synthesis of indium arsenide quantum dots emissive in the short-wavelength infrared. Nat. Commun. 2016, 7, 12749.
[42]
Zhong, Y. T.; Ma, Z. R.; Zhu, S. J.; Yue, J. Y.; Zhang, M. X.; Antaris, A. L.; Yuan, J.; Cui, R.; Wan, H.; Zhou, Y. et al. Boosting the down-shifting luminescence of rare-earth nanocrystals for biological imaging beyond 1,500 nm. Nat. Commun. 2017, 8, 737.
[43]
Ma, Z. R.; Zhang, M. X.; Yue, J. Y.; Alcazar, C.; Zhong, Y. T.; Doyle, T. C.; Dai, H. J.; Huang, N. F. Near-infrared IIb fluorescence imaging of vascular regeneration with dynamic tissue perfusion measurement and high spatial resolution. Adv. Funct. Mater. 2018, 28, 1803417.
[44]
Wang, S. F.; Liu, L.; Fan, Y.; El-Toni, A. M.; Alhoshan, M. S.; Li, D. D.; Zhang, F. In vivo high-resolution ratiometric fluorescence imaging of inflammation using NIR-II nanoprobes with 1,550 nm emission. Nano Lett. 2019, 19, 2418-2427.
[45]
Zhong, Y. T.; Ma, Z. R.; Wang, F. F.; Wang, X.; Yang, Y. J.; Liu, Y. L.; Zhao, X.; Li, J. C.; Du, H. T.; Zhang, M. X. et al. In vivo molecular imaging for immunotherapy using ultra-bright near-infrared-IIb rare-earth nanoparticles. Nat. Biotechnol. 2019, 37, 1322-1331.
Nano Research
Pages 2239-2245
Cite this article:
Shi X, Chen S, Luo M-Y, et al. Zn-doping enhances the photoluminescence and stability of PbS quantum dots for in vivo high-resolution imaging in the NIR-II window. Nano Research, 2020, 13(8): 2239-2245. https://doi.org/10.1007/s12274-020-2843-4
Topics:

749

Views

37

Crossref

N/A

Web of Science

38

Scopus

6

CSCD

Altmetrics

Received: 03 December 2019
Revised: 23 April 2020
Accepted: 01 May 2020
Published: 05 August 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return