AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Crystal phase-controlled growth of PtCu and PtCo alloys on 4H Au nanoribbons for electrocatalytic ethanol oxidation reaction

Jie Wang2,§Jian Zhang2,§Guigao Liu2,§Chongyi Ling1,3,§Bo Chen2,§Jingtao Huang2Xiaozhi Liu4Bing Li5An-Liang Wang2Zhaoning Hu2Ming Zhou2Ye Chen2Hongfei Cheng2Jiawei Liu2Zhanxi Fan1,6Nailiang Yang2Chaoliang Tan2Lin Gu4Jinlan Wang3Hua Zhang1,6 ( )
Department of Chemistry, City University of Hong Kong, Hong Kong, China
Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
School of Physics, Southeast University, Nanjing 211189, China
Institute of Physics, Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China
Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), Singapore 138634, Singapore
Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China

§ Jie Wang, Jian Zhang, Guigao Liu, Chongyi Ling, and Bo Chen contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Crystal phase can greatly affect the physicochemical properties and applications of nanomaterials. However, it still remains a great challenge to synthesize nanostructures with the same composition and morphology but different phases in order to explore the phase-dependent properties and applications. Herein, we report the crystal phase-controlled synthesis of PtCu alloy shells on 4H Au nanoribbons (NRBs), referred to as 4H-Au NRBs, to form the 4H-Au@PtCu core-shell NRBs. By tuning the thickness of PtCu, 4H-PtCu and face-centered cubic (fcc) phase PtCu (fcc-PtCu) alloy shells are successfully grown on the 4H-Au NRB cores. This thickness-dependent phase-controlled growth strategy can also be used to grow PtCo alloys with 4H or fcc phase on 4H-Au NRBs. Significantly, when used as electrocatalysts for the ethanol oxidation reaction (EOR) in alkaline media, the 4H-Au@4H-PtCu NRBs show much better EOR performance than the 4H-Au@fcc-PtCu NRBs, and both of them possess superior performance compared to the commercial Pt black. Our study provides a strategy on phase-controlled synthesis of nanomaterials used for crystal phase-dependent applications.

Electronic Supplementary Material

Download File(s)
12274_2020_2849_MOESM1_ESM.pdf (6.4 MB)

References

[1]
Cao, X.; Han, Y.; Gao, C. Z.; Xu, Y.; Huang, X. M.; Willander, M.; Wang, N. Highly catalytic active PtNiCu nanochains for hydrogen evolution reaction. Nano Energy 2014, 9, 301-308.
[2]
Liu, S. L.; Zhang, Q. H.; Li, Y. F.; Han, M.; Gu, L.; Nan, C. W.; Bao, J. C.; Dai, Z. H. Five-fold twinned Pd2NiAg nanocrystals with increased surface Ni site availability to improve oxygen reduction activity. J. Am. Chem. Soc. 2015, 137, 2820-2823.
[3]
Wu, Y. E.; Wang, D. S.; Zhou, G.; Yu, R.; Chen, C.; Li, Y. D. Sophisticated construction of Au islands on Pt-Ni: An ideal trimetallic nanoframe catalyst. J. Am. Chem. Soc. 2014, 136, 11594-11597.
[4]
Shi, Q. R.; Zhang, P. N.; Li, Y. J.; Xia, H. B.; Wang, D. Y.; Tao, X. T. Synthesis of open-mouthed, yolk-shell Au@AgPd nanoparticles with access to interior surfaces for enhanced electrocatalysis. Chem. Sci. 2015, 6, 4350-4357.
[5]
Saleem, F.; Xu, B.; Ni, B.; Liu, H. L.; Nosheen, F.; Li, H. Y.; Wang, X. Atomically thick Pt-Cu Nanosheets: Self-assembled sandwich and nanoring-like structures. Adv. Mater. 2015, 27, 2013-2018.
[6]
Cui, X. Y.; Zhang, Z. C.; Gong, Y.; Saleem, F.; Chen B.; Du, Y. H.; Lai, Z. C.; Yang, N. L.; Li, B.; Gu, L. et al. Defect-rich, candied haws-shaped AuPtNi alloy nanostructures for highly efficient electrocatalysis. CCS Chem. 2020, 2, 24-30.
[7]
Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339-1343.
[8]
Strasser, P.; Koh, S.; Anniyev, T.; Greeley, J.; More, K.; Yu, C. F.; Liu, Z. C.; Kaya, S.; Nordlund, D.; Ogasawara, H. et al. Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. Nat. Chem. 2010, 2, 454-460.
[9]
Escudero-Escribano, M.; Malacrida, P.; Hansen, M. H.; Vej-Hansen, U. G.; Velázquez-Palenzuela, A.; Tripkovic, V.; Schiøtz, J.; Rossmeis, J.; Stephens, I. E. L.; Chorkendorff, I. Tuning the activity of Pt alloy electrocatalysts by means of the lanthanide contraction. Science 2016, 352, 73-76.
[10]
Lim, B.; Jiang, M. J.; Camargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X. M.; Zhu, Y. M.; Xia, Y. N. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 2009, 324, 1302-1305.
[11]
Kang, Y. J.; Murray, C. B. Synthesis and electrocatalytic properties of cubic Mn-Pt nanocrystals (nanocubes). J. Am. Chem. Soc. 2010, 132, 7568-7569.
[12]
Zhang, Q.; Li, W. Y.; Moran, C.; Zeng, J.; Chen, J. Y.; Wen, L. P.; Xia, Y. N. Seed-mediated synthesis of Ag nanocubes with controllable edge lengths in the range of 30-200 nm and comparison of their optical properties. J. Am. Chem. Soc. 2010, 132, 11372-11378.
[13]
Xia, B. Y.; Wu, H. B.; Li, N.; Yan, Y.; Lou, X. W.; Wang, X. One-pot synthesis of Pt-Co alloy nanowire assemblies with tunable composition and enhanced electrocatalytic properties. Angew. Chem., Int. Ed. 2015, 54, 3797-3801.
[14]
Wang, P. T.; Jiang, K. Z.; Wang, G. M.; Yao, J. L.; Huang, X. Q. Phase and interface engineering of platinum-nickel nanowires for efficient electrochemical hydrogen evolution. Angew. Chem., Int. Ed. 2016, 55, 12859-12863.
[15]
Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.; Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 2007, 316, 732-735.
[16]
Chen, B.; Sun, G. Z.; Wang, J.; Liu, G. G.; Tan, C. L.; Chen, Y.; Cheng, H. F.; Chen, J. Z.; Ma, Q. L.; Huang, L. et al. Transition metal dichalcogenide/multi-walled carbon nanotube-based fibers as flexible electrodes for electrocatalytic hydrogen evolution. Chem. Commun. 2020, 56, 5131-5134.
[17]
Fan, Z. X.; Zhang, H. Crystal phase-controlled synthesis, properties and applications of noble metal nanomaterials. Chem. Soc. Rev. 2016, 45, 63-82.
[18]
Fan, Z. X.; Huang, X.; Chen, Y.; Huang, W.; Zhang, H. Facile synthesis of gold nanomaterials with unusual crystal structures. Nat. Protoc. 2017, 12, 2367-2376.
[19]
Fan, Z. X.; Zhang, H. Template synthesis of noble metal nanocrystals with unusual crystal structures and their catalytic applications. Acc. Chem. Res. 2016, 49, 2841-2850.
[20]
Cheng, H. F.; Yang, N. L.; Lu, Q. P.; Zhang, Z. C.; Zhang, H. Syntheses and properties of metal nanomaterials with novel crystal phases. Adv. Mater. 2018, 30, 1707189.
[21]
Chen, Y.; Fan, Z. X.; Zhang, Z. C.; Niu, W. X.; Li, C. L.; Yang, N. L.; Chen, B.; Zhang, H. Two-dimensional metal nanomaterials: Synthesis, properties, and applications. Chem. Rev. 2018, 118, 6409-6455.
[22]
Huang, J. T.; Niu, W. X.; Li, C. L.; Tan, C. L.; Yin, P. F.; Cheng, H. F.; Hu, Z. N.; Yang, N. L.; He, Q. Y.; Nam, G. H. et al. In-situ probing of crystal-phase-dependent photocatalytic activities of Au nanostructures by surface-enhanced Raman spectroscopy. ACS Mater. Lett. 2020, 2, 409-414.
[23]
Chen, Y.; Lai, Z. C.; Zhang, X.; Fan, Z. X.; He, Q. Y.; Tan, C. L.; Zhang, H. Phase engineering of nanomaterials. Nat. Rev. Chem. 2020, 4, 243-256.
[24]
Cao, Z. M.; Chen, Q. L.; Zhang, J. W.; Li, H. Q.; Jiang, Y. Q.; Shen, S. Y.; Fu, G.; Lu, B. A.; Xie, Z. X.; Zheng, L. S. Platinum-nickel alloy excavated nano-multipods with hexagonal close-packed structure and superior activity towards hydrogen evolution reaction. Nat. Commun. 2017, 8, 15131.
[25]
Zhang, Z. C.; Liu, G. G.; Cui, X. Y.; Chen, B.; Zhu, Y. H.; Gong, Y.; Saleem, F.; Xi, S. B.; Du, Y. H.; Borgna, A. et al. Crystal phase and architecture engineering of lotus-thalamus-shaped Pt-Ni anisotropic superstructures for highly efficient electrochemical hydrogen evolution. Adv. Mater. 2018, 30, 1801741.
[26]
Lu, Q. P.; Wang, A. L.; Gong, Y.; Hao, W.; Cheng, H. F.; Chen, J. Z.; Li, B.; Yang, N. L.; Niu, W. X.; Wang, J. et al. Crystal phase-based epitaxial growth of hybrid noble metal nanostructures on 4H/fcc Au nanowires. Nat. Chem. 2018, 10, 456-461.
[27]
Fan, Z. X.; Bosman, M.; Huang, X.; Huang, D.; Yu, Y.; Ong, K. P.; Akimov, Y. A.; Wu, L.; Li, B.; Wu, J. et al. Stabilization of 4H hexagonal phase in gold nanoribbons. Nat. Commun. 2015, 6, 7684.
[28]
Chen, Y.; Fan, Z. X.; Luo, Z. M.; Liu, X. Z.; Lai, Z. C.; Li, B.; Zong, Y.; Gu, L.; Zhang, H. High-yield synthesis of crystal-phase-heterostructured 4H/fcc Au@Pd core-shell nanorods for electrocatalytic ethanol oxidation. Adv. Mater. 2017, 29, 1701331.
[29]
Yang, N. L.; Cheng, H. F.; Liu, X. Z.; Yun, Q. B.; Chen, Y.; Li, B.; Chen, B.; Zhang, Z. C.; Chen, X. P.; Lu, Q. P. et al. Amorphous/crystalline hetero-phase Pd nanosheets: One-pot synthesis and highly selective hydrogenation reaction. Adv. Mater. 2018, 30, 1803234.
[30]
Yun, Q. B.; Lu, Q. P.; Li, C. L.; Chen, B.; Zhang, Q. H.; He, Q. Y.; Hu, Z. N.; Zhang, Z. C.; Ge, Y. Y.; Yang, N. L. et al. Synthesis of PdM (M = Zn, Cd, ZnCd) nanosheets with an unconventional face-centered tetragonal phase as highly efficient electrocatalysts for ethanol oxidation. ACS Nano 2019, 13, 14329-14336.
[31]
Liu, Z. Q.; Zhang, X.; Gong, Y.; Lu, Q. P.; Zhang, Z. C.; Cheng, H. F.; Ma, Q. L.; Chen, J. Z.; Zhao, M. T.; Chen, B. et al. Synthesis of MoX2 (X = Se or S) monolayers with high-concentration 1T′ phase on 4H/fcc-Au nanorods for hydrogen evolution. Nano Res. 2019, 12, 1301-1305.
[32]
Fan, Z. X.; Chen, Y.; Zhu, Y. H.; Wang, J.; Li, B.; Zong, Y.; Han, Y.; Zhang, H. Epitaxial growth of unusual 4H hexagonal Ir, Rh, Os, Ru and Cu nanostructures on 4H Au nanoribbons. Chem. Sci. 2017, 8, 795-799.
[33]
Fan, Z. X.; Luo, Z. M.; Huang, X.; Li, B.; Chen, Y.; Wang, J.; Hu, Y. L.; Zhang, H. Synthesis of 4H/fcc noble multimetallic nanoribbons for electrocatalytic hydrogen evolution reaction. J. Am. Chem. Soc. 2016, 138, 1414-1419.
[34]
Li, Q.; Niu, W. X.; Liu, X. C.; Chen, Y.; Wu, X. T.; Wen, X. D.; Wang, Z. W.; Zhang, H.; Quan, Z. W. Pressure-induced phase engineering of gold nanostructures. J. Am. Chem. Soc. 2018, 140, 15783-15790.
[35]
Green, C. L.; Kucernak, A. Determination of the platinum and ruthenium surface areas in platinum-ruthenium alloy electrocatalysts by underpotential deposition of copper. I. Unsupported catalysts. J. Phys. Chem. B 2002, 106, 1036-1047.
[36]
Zhang, Z. C.; Luo, Z. M.; Chen, B.; Wei, C.; Zhao, J.; Chen, J. Z.; Zhang, X.; Lai, Z. C.; Fan, Z. X.; Tan, C. L. et al. One-pot synthesis of highly anisotropic five-fold-twinned PtCu nanoframes used as a bifunctional electrocatalyst for oxygen reduction and methanol oxidation. Adv. Mater. 2016, 28, 8712-8717.
[37]
Bian, T.; Zhang, H.; Jiang, Y. Y.; Jin, C. H.; Wu, J. B.; Yang, H.; Yang, D. R. Epitaxial growth of twinned Au-Pt core-shell star-shaped decahedra as highly durable electrocatalysts. Nano Lett. 2015, 15, 7808-7815.
[38]
Günther, C.; Vrijmoeth, J.; Hwang, R. Q.; Behm, R. J. Strain relaxation in hexagonally close-packed metal-metal interfaces. Phys. Rev. Lett. 1995, 74, 754-757.
[39]
Zheng, Y.; Jiao, Y.; Zhu, Y. H.; Li, L. H.; Han, Y.; Chen, Y.; Jaroniec, M.; Qiao, S. Z. High electrocatalytic hydrogen evolution activity of an anomalous ruthenium catalyst. J. Am. Chem. Soc. 2016, 138, 16174-16181.
[40]
Li, H. J.; Wu, H. X.; Zhai, Y. J.; Xu, X. L.; Jin, Y. D. Synthesis of monodisperse plasmonic Au core-Pt shell concave nanocubes with superior catalytic and electrocatalytic activity. ACS Catal. 2013, 3, 2045-2051.
[41]
Sun, X. L.; Li, D. G.; Ding, Y.; Zhu, W. L.; Guo, S. J.; Wang, Z. L.; Sun, S. H. Core/shell Au/CuPt nanoparticles and their dual electrocatalysis for both reduction and oxidation reactions. J. Am. Chem. Soc. 2014, 136, 5745-5749.
[42]
Hong, W.; Wang, J.; Wang, E. K. Dendritic Au/Pt and Au/PtCu nanowires with enhanced electrocatalytic activity for methanol electrooxidation. Small 2014, 10, 3262-3265.
Nano Research
Pages 1970-1975
Cite this article:
Wang J, Zhang J, Liu G, et al. Crystal phase-controlled growth of PtCu and PtCo alloys on 4H Au nanoribbons for electrocatalytic ethanol oxidation reaction. Nano Research, 2020, 13(7): 1970-1975. https://doi.org/10.1007/s12274-020-2849-y
Topics:
Part of a topical collection:

849

Views

36

Crossref

N/A

Web of Science

35

Scopus

7

CSCD

Altmetrics

Received: 24 March 2020
Revised: 25 April 2020
Accepted: 30 April 2020
Published: 30 May 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return