AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Oxygen defects boost polysulfides immobilization and catalytic conversion: First-principles computational characterization and experimental design

Qiu He1Bin Yu1Huan Wang1Masud Rana2Xiaobin Liao1Yan Zhao1,3( )
State Key Laboratory of Silicate Materials for Architectures, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
Materials Engineering, School of Mechanical and Mining Engineering, The University of Queensland, St Lucia, QLD 4072, Australia
The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
Show Author Information

Graphical Abstract

Abstract

Although some experiments have shown that point defects in a cathode host material may enhance its performance for lithium-sulfur battery (LSB), the enhancement mechanism needs to be well investigated for the design of desired sulfur host. Herein, the first principle density functional theory (DFT) is adopted to investigate a high-performance sulfur host material based on oxygen-defective TiO2 (D-TiO2). The adsorption energy comparisons and Gibbs free energy analyses verify that D-TiO2 has relatively better performances than defect-free TiO2 in terms of anchoring effect and catalytic conversion of polysulfides. Meanwhile, D-TiO2 is capable of absorbing the most soluble and diffusive long-chain polysulfides. The newly designed D-TiO2 composited with three-dimensional graphene aerogel (D-TiO2@Gr) has been shown to be an excellent sulfur host, maintaining a specific discharge capacity of 1,049.3 mAh·g-1 after 100 cycles at 1C with a sulfur loading of 3.2 mg·cm-2. Even with the sulfur mass loading increasing to 13.7 mg·cm-2, an impressive stable cycling is obtained with an initial areal capacity of 14.6 mAh·cm-2, confirming the effective enhancement of electrochemical performance by the oxygen defects. The DFT calculations shed lights on the enhancement mechanism of the oxygen defects and provide some guidance for designing advanced sulfur host materials.

Electronic Supplementary Material

Download File(s)
12274_2020_2850_MOESM1_ESM.pdf (5.6 MB)

References

[1]
Kim, H.; Lee, J.; Ahn, H.; Kim, O.; Park, M. J. Synthesis of three-dimensionally interconnected sulfur-rich polymers for cathode materials of high-rate lithium-sulfur batteries. Nat. Commun. 2015, 6, 7278.
[2]
Manthiram, A.; Chung, S. H.; Zu, C. X. Lithium-sulfur batteries: Progress and prospects. Adv. Mater. 2015, 27, 1980-2006.
[3]
Son, Y.; Lee, J. S.; Son, Y.; Jang, J. H.; Cho, J. Recent advances in lithium sulfide cathode materials and their use in lithium sulfur batteries. Adv. Energy Mater. 2015, 5, 1500110.
[4]
Yang, Y.; Zheng, G. Y.; Cui, Y. Nanostructured sulfur cathodes. Chem. Soc. Rev. 2013, 42, 3018-3032.
[5]
Guo, W.; Fu, Y. Z. A perspective on energy densities of rechargeable Li-S batteries and alternative sulfur-based cathode materials. Energy Environ. Mater. 2018, 1, 20-27.
[6]
Yu, T.; Li, F.; Liu, C. Y.; Zhang, S. T.; Xu, H. Y.; Yang, G. C. Understanding the role of lithium sulfide clusters in lithium-sulfur batteries. J. Mater. Chem. A 2017, 5, 9293-9298.
[7]
Xu, R.; Lu, J.; Amine, K. Progress in mechanistic understanding and characterization techniques of Li-S batteries. Adv. Energy Mater. 2015, 5, 1500408.
[8]
He, Y. B.; Chang, Z.; Wu, S. C.; Zhou, H. S. Effective strategies for long-cycle life lithium-sulfur batteries. J. Mater. Chem. A 2018, 6, 6155-6182.
[9]
Fu, A.; Wang, C. Z.; Pei, F.; Cui, J. Q.; Fang, X. L.; Zheng, N. F. Recent advances in hollow porous carbon materials for lithium-sulfur batteries. Small 2019, 15, 1804786.
[10]
Ogoke, O.; Wu, G.; Wang, X. L.; Casimir, A.; Ma, L.; Wu, T. P.; Lu, J. Effective strategies for stabilizing sulfur for advanced lithium-sulfur batteries. J. Mater. Chem. A 2017, 5, 448-469.
[11]
Pang, Q.; Liang, X.; Kwok, C. Y.; Nazar, L. F. Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 2016, 1, 16132.
[12]
Wu, Y. L.; Zhu, X. R.; Li, P. R.; Zhang, T.; Li, M.; Deng, J.; Huang, Y.; Ding, P.; Wang, S. X.; Zhang, R. et al. Ultradispersed WxC nanoparticles enable fast polysulfide interconversion for high-performance Li-S batteries. Nano Energy 2019, 59, 636-643.
[13]
Yu, M. L.; Zhou, S.; Wang, Z. Y.; Wang, Y. W.; Zhang, N.; Wang, S.; Zhao, J. J.; Qiu, J. S. Accelerating polysulfide redox conversion on bifunctional electrocatalytic electrode for stable Li-S batteries. Energy Storage Mater. 2018, 20, 98-107.
[14]
Du, L. Y.; Wu, Q.; Yang, L. J.; Wang, X.; Che, R. C.; Lyu, Z.; Chen, W.; Wang, X. Z.; Hu, Z. Efficient synergism of electrocatalysis and physical confinement leading to durable high-power lithium-sulfur batteries. Nano Energy 2019, 57, 34-40.
[15]
Xu, L. L.; Zhao, H. Y.; Sun, M. Z.; Huang, B. L.; Wang, J. W.; Xia, J. L.; Li, N.; Yin, D. D.; Luo, M.; Luo, F. et al. Oxygen vacancies on layered niobic acid that weaken the catalytic conversion of polysulfides in lithium-sulfur batteries. Angew Chem., Int. Ed. 2019, 58, 11491-11496.
[16]
Yu, M. L.; Wang, Z. Y.; Wang, Y. W.; Dong, Y. F.; Qiu, J. S. Freestanding flexible Li2S paper electrode with high mass and capacity loading for high-energy Li-S batteries. Adv. Energy Mater. 2017, 7, 1700018.
[17]
Peng, H. J.; Huang, J. Q.; Cheng, X. B.; Zhang, Q. Review on high-loading and high-energy lithium-sulfur batteries. Adv. Energy Mater. 2017, 7, 1700260.
[18]
Yang, W.; Yang, W.; Dong, L. B.; Gao, X. C.; Wang, G. X.; Shao, G. J. Enabling immobilization and conversion of polysulfides through a nitrogen-doped carbon nanotubes/ultrathin MoS2 nanosheet core-shell architecture for lithium-sulfur batteries. J. Mater. Chem. A 2019, 7, 13103-13112.
[19]
Salhabi, E. H. M.; Zhao, J. L.; Wang, J. Y.; Yang, M.; Wang, B.; Wang, D. Hollow multi-shelled structural TiO2-x with multiple spatial confinement for long-life lithium-sulfur batteries. Angew. Chem., Int. Ed. 2019, 58, 9078-9082.
[20]
Wang, H. E.; Yin, K. L.; Qin, N.; Zhao, X.; Xia, F. J.; Hu, Z. Y.; Guo, G. L.; Cao, G. Z.; Zhang, W. J. Oxygen-deficient titanium dioxide as a functional host for lithium-sulfur batteries. J. Mater. Chem. A 2019, 7, 10346-10353.
[21]
Cai, W. L.; Li, G. R.; Zhang, K. L.; Xiao, G. N.; Wang, C.; Ye, K. F.; Chen, Z. W.; Zhu, Y. C.; Qian, Y. T. Conductive nanocrystalline niobium carbide as high-efficiency polysulfides tamer for lithium-sulfur batteries. Adv. Funct. Mater. 2018, 28, 1704865.
[22]
Hao, B. Y.; Li, H.; Lv, W.; Zhang, Y. B.; Niu, S. Z.; Qi, Q.; Xiao, S. J.; Li, J.; Kang, F. Y.; Yang, Q. H. Reviving catalytic activity of nitrides by the doping of the inert surface layer to promote polysulfide conversion in lithium-sulfur batteries. Nano Energy 2019, 60, 305-311.
[23]
Li, C. C.; Liu, X. B.; Zhu, L.; Huang, R. Z.; Zhao, M. W.; Xu, L. Q.; Qian, Y. T. Conductive and polar titanium boride as a sulfur host for advanced lithium-sulfur batteries. Chem. Mater. 2018, 30, 6969-6977.
[24]
Guan, B.; Fan, L. S.; Wu, X.; Wang, P. X.; Qiu, Y.; Wang, M. X.; Guo, Z. K.; Zhang, N. Q.; Sun, K. N. The facile synthesis and enhanced lithium-sulfur battery performance of an amorphous cobalt boride (Co2B)@graphene composite cathode. J. Mater. Chem. A 2018, 6, 24045-24049.
[25]
Chen, Y.; Zhang, W. X.; Zhou, D.; Tian, H. J.; Su, D. W.; Wang, C. Y.; Stockdale, D.; Kang, F. Y.; Li, B. H.; Wang, G. X. Co-Fe mixed metal phosphide nanocubes with highly interconnected-pore architecture as an efficient polysulfide mediator for lithium-sulfur batteries. ACS Nano 2019, 13, 4731-4741.
[26]
Razaq, R.; Sun, D.; Xin, Y.; Li, Q.; Huang, T. Z.; Zheng, L.; Zhang, Z. L.; Huang, Y. H. Enhanced kinetics of polysulfide redox reactions on Mo2C/CNT in lithium-sulfur batteries. Nanotechnology 2018, 29, 295401.
[27]
Wang, J. W.; Zhou, B.; Zhao, H. Y.; Wu, M. M.; Yang, Y. D.; Sun, X. L.; Wang, D. H.; Du, Y. P. A sandwich-type sulfur cathode based on multifunctional ceria hollow spheres for high-performance lithium-sulfur batteries. Mater. Chem. Front. 2019, 3, 1317-1322.
[28]
Zhou, T. H.; Lv, W.; Li, J.; Zhou, G. M.; Zhao, Y.; Fan, S. X.; Liu, B. L.; Li, B. H.; Kang, F. Y.; Yang, Q. H. Twinborn TiO2-TiN heterostructures enabling smooth trapping-diffusion-conversion of polysulfides towards ultralong life lithium-sulfur batteries. Energy Environ. Sci. 2017, 10, 1694-1703.
[29]
Song, Y. Z.; Zhao, W.; Kong, L.; Zhang, L.; Zhu, X. Y.; Shao, Y. L.; Ding, F.; Zhang, Q.; Sun, J. Y.; Liu, Z. F. Synchronous immobilization and conversion of polysulfides on a VO2-VN binary host targeting high sulfur load Li-S batteries. Energy Environ. Sci. 2018, 11, 2620-2630.
[30]
Choudhury, B.; Bayan, S.; Choudhury, A.; Chakraborty, P. Narrowing of band gap and effective charge carrier separation in oxygen deficient TiO2 nanotubes with improved visible light photocatalytic activity. J. Colloid Interf. Sci 2016, 465, 1-10.
[31]
Liu, M. M; Zhang, C. C.; Su, J. M.; Chen, X.; Ma, T. Y.; Huang, T.; Yu, A. S. Propelling polysulfide conversion by defect-rich MoS2 nanosheets for high-performance lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2019, 11, 20788-20795.
[32]
Tian, Y.; Zhao, Y.; Zhang, Y. G.; Ricardez-Sandoval, L. A.; Wang, X.; Li, J. D. Construction of oxygen-deficient La(OH)3 nanorods wrapped by reduced graphene oxide for polysulfide trapping toward high-performance lithium/sulfur batteries. ACS Appl. Mater. Interfaces 2019, 11, 23271-23279.
[33]
Wang, Y. K.; Zhang, R. F.; Chen, J.; Wu, H.; Lu, S. Y.; Wang, K.; Li, H. L.; Harris, C. J.; Xi, K.; Kumar, R. V. et al. Enhancing catalytic activity of titanium oxide in lithium-sulfur batteries by band engineering. Adv. Energy Mater. 2019, 9, 1900953.
[34]
Chen, X.; Hou, T. Z.; Persson, K. A.; Zhang, Q. Combining theory and experiment in lithium-sulfur batteries: Current progress and future perspectives. Mater. Today 2019, 22, 142-158.
[35]
Rana, M.; Li, M.; Huang, X.; Luo, B.; Gentle, I.; Knibbe, R. Recent advances in separators to mitigate technical challenges associated with re-chargeable lithium sulfur batteries. J. Mater. Chem. A 2019, 7, 6596-6615.
[36]
Hummers, W. S. Jr., Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.
[37]
Wan, J. W.; Chen, W. X.; Jia, C. Y.; Zheng, L. R.; Dong, J. C.; Zheng, X. S.; Wang, Y.; Yan, W. S.; Chen, C.; Peng, Q. et al. Defect effects on TiO2 nanosheets: Stabilizing single atomic site Au and promoting catalytic properties. Adv. Mater. 2018, 30, 1705369.
[38]
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.
[39]
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
[40]
Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758-1775.
[41]
Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.
[42]
Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901-9904.
[43]
Savva, A. I.; Smith, K. A.; Lawson, M.; Croft, S. R.; Weltner, A. E.; Jones, C. D.; Bull, H.; Simmonds, P. J.; Li, L.; Xiong, H. Defect generation in TiO2 nanotube anodes via heat treatment in various atmospheres for lithium-ion batteries. Phys. Chem. Chem. Phys. 2018, 20, 22537-22546.
[44]
Sarkar, A.; Khan, G. G. The formation and detection techniques of oxygen vacancies in titanium oxide-based nanostructures. Nanoscale 2019, 11, 3414-3444.
[45]
Li, B. Q.; Peng, H. J.; Chen, X.; Zhang, S. Y.; Xie, J.; Zhao, C. X.; Zhang, Q. Polysulfide electrocatalysis on framework porphyrin in high-capacity and high-stable lithium-sulfur batteries. CCS Chem. 2019, 1, 128-137.
[46]
Gao, X. J.; Yang, X. F.; Li, M. S.; Sun, Q.; Liang, J. N.; Luo, J.; Wang, J. W.; Li, W. H.; Liang, J. W.; Liu, Y. L. et al. Cobalt-doped SnS2 with dual active centers of synergistic absorption-catalysis effect for high-S loading Li-S batteries. Adv. Funct. Mater. 2019, 29, 1806724.
[47]
Cai, D.; Lu, M. J.; Li, L.; Cao, J. M.; Chen, D.; Tu, H. R.; Li, J. Z.; Han, W. A highly conductive MOF of graphene analogue Ni3(HITP)2 as a sulfur host for high-performance lithium-sulfur batteries. Small 2019, 15, 1902605.
[48]
Liu, S. F.; Ji, X.; Yue, J.; Hou, S.; Wang, P. F.; Cui, C. Y.; Chen, J.; Shao, B. W.; Li, J. R.; Han, F. D. et al. High interfacial-energy interphase promoting safe lithium metal batteries. J. Am. Chem. Soc. 2020, 142, 2438-2447.
Nano Research
Pages 2299-2307
Cite this article:
He Q, Yu B, Wang H, et al. Oxygen defects boost polysulfides immobilization and catalytic conversion: First-principles computational characterization and experimental design. Nano Research, 2020, 13(8): 2299-2307. https://doi.org/10.1007/s12274-020-2850-5
Topics:

738

Views

44

Crossref

N/A

Web of Science

38

Scopus

5

CSCD

Altmetrics

Received: 19 December 2019
Revised: 16 April 2020
Accepted: 02 May 2020
Published: 05 August 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return