AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Molecular-scale integrated multi-functions for organic light-emitting transistors

Lei Zheng1,§Jinfeng Li1,§Ke Zhou2Xixia Yu1Xiaotao Zhang1( )Huanli Dong2( )Wenping Hu1,2,3( )
Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China

§ Lei Zheng and Jinfeng Li contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Organic light-emitting transistors (OLETs) integrate the functions of light-emitting diodes and field-effect transistors into a unique device, opening a new door for optoelectronics. However, there is still a challenge due to the absence of high quality organic semiconductors for OLETs. Herein, we reported a novel molecule 2,6-di(anthracen-2-yl)naphthalene (2,6-DAN), which exhibited mobility of up to 19 cm2·V-1·s-1 and an absolute fluorescence quantum yield of 37.09%, which are good values for organic semiconductors. Moreover, OLETs based on 2,6-DAN single crystals showed bright yellowish-green emission and well-balanced ambipolar charge transport. The excellent ratio of hole to electron mobility can reach up to 0.86, which is superior to most single-component OLETs in typical device configurations reported so far.

Electronic Supplementary Material

Download File(s)
12274_2020_2851_MOESM1_ESM.pdf (2.3 MB)

References

[1]
Melzer, C.; von Seggern, H. Enlightened organic transistors. Nat. Mater. 2010, 9, 470-472.
[2]
Smits, E. C. P.; Setayesh, S.; Anthopoulos, T. D.; Buechel, M.; Nijssen, W.; Coehoorn, R.; Blom, P. W. M.; de Boer, B.; de Leeuw, D. M. Near-infrared light-emitting ambipolar organic field-effect transistors. Adv. Mater. 2007, 19, 734-738.
[3]
Zaumseil, J.; Donley, C. L.; Kim, J. S.; Friend, R. H.; Sirringhaus, H. Efficient top-gate, ambipolar, light-emitting field-effect transistors based on a green-light-emitting polyfluorene. Adv. Mater. 2006, 18, 2708-2712.
[4]
Zaumseil, J.; Friend, R. H.; Sirringhaus, H. Spatial control of the recombination zone in an ambipolar light-emitting organic transistor. Nat. Mater. 2006, 5, 69-74.
[5]
Cicoira, F.; Santato, C. Organic light emitting field effect transistors: Advances and perspectives. Adv. Funct. Mater. 2007, 17, 3421-3434.
[6]
Li, J.; Zhou, K.; Liu, J.; Zhen, Y. G.; Liu, L.; Zhang, J. D.; Dong, H. L.; Zhang, X. T.; Jiang, L.; Hu, W. P. Aromatic extension at 2,6-positions of anthracene toward an elegant strategy for organic semiconductors with efficient charge transport and strong solid state emission. J. Am. Chem. Soc. 2017, 139, 17261-17264.
[7]
Dadvand, A.; Moiseev, A. G.; Sawabe, K.; Sun, W. H.; Djukic, B.; Chung, I.; Takenobu, T.; Rosei, F.; Perepichka, D. F. Maximizing field-effect mobility and solid-state luminescence in organic semiconductors. Angew. Chem., Int. Ed. 2012, 51, 3837-3841.
[8]
Ju, H. J.; Wang, K.; Zhang, J.; Geng, H.; Liu, Z. T.; Zhang, G. X.; Zhao, Y. S.; Zhang, D. Q. 1,6- and 2,7-trans-β-styryl substituted pyrenes exhibiting both emissive and semiconducting properties in the solid state. Chem. Mater. 2017, 29, 3580-3588.
[9]
Gwinner, M. C.; Kabra D.; Roberts, M.; Brenner, T. J. K.; Wallikewitz, B. H.; McNeill, C. R.; Friend, R. H.; Sirringhaus, H. Highly efficient single-layer polymer ambipolar light-emitting field-effect transistors. Adv. Mater. 2012, 24, 2728-2734.
[10]
Park, S. K.; Kim, J. H.; Ohto, T.; Yamada, R.; Jones, A. O. F.; Whang, D. R.; Cho, I.; Oh, S.; Hong, S. H.; Kwon, J. E. et al. Highly luminescent 2D-type slab crystals based on a molecular charge-transfer complex as promising organic light-emitting transistor materials. Adv. Mater. 2017, 29, 1701346.
[11]
Zhang, X. T.; Dong, H. L.; Hu, W. P. Organic semiconductor single crystals for electronics and photonics. Adv. Mater. 2018, 30, 1801048.
[12]
Hoeben, F. J. M.; Jonkheijm, M. P.; Meijer, E. W.; Schenning, A. P. H. J. About supramolecular assemblies of π-conjugated systems. Chem. Rev. 2005, 105, 1491-1546.
[13]
Thomas, S. W.; Joly, G. D.; Swager, T. M. Chemical sensors based on amplifying fluorescent conjugated polymers. Chem. Rev. 2007, 107, 1339-1386.
[14]
Liu, Z. T.; Zhang, G. X.; Zhang, D. Q. Molecular materials that can both emit light and conduct charges: Strategies and perspectives. Chem.—Eur. J. 2016, 22, 462-471.
[15]
Feng, H. T.; Yuan, Y. X.; Xiong, J. B.; Zheng, Y. S.; Tang, B. Z. Macrocycles and cages based on tetraphenylethylene with aggregation-induced emission effect. Chem. Soc. Rev. 2018, 47, 7452-7476.
[16]
Sundar, V. C.; Zaumseil, J.; Podzorov, V.; Menard, E.; Willett, R. L.; Someya, T.; Gershenson, M. E.; Rogers, J. A. Elastomeric transistor stamps: Reversible probing of charge transport in organic crystals. Science 2004, 303, 1644-1646.
[17]
Katoh, R.; Suzuki, K.; Furube, A.; Kotani, M.; Tokumaru, K. Fluorescence quantum yield of aromatic hydrocarbon crystals. J. Phys. Chem. C 2009, 113, 2961-2965.
[18]
Aleshin, A. N. Lee, J. Y.; Chu, S. W.; Kim, J. S.; Park, Y. W. Mobility studies of field-effect transistor structures basedon anthracene single crystals. Appl. Phys. Lett. 2004, 84, 5383-5385.
[19]
Mei, J. G.; Diao, Y.; Appleton, A. L.; Fang, L.; Bao, Z. N. Integrated materials design of organic semiconductors for field-effect transistors. J. Am. Chem. Soc. 2013, 135, 6724-6746.
[20]
da Silva Filho, D. A.; Kim, E. G.; Brédas, J. L. Transport properties in the rubrene crystal: Electronic coupling and vibrational reorganization energy. Adv. Mater. 2005, 17, 1072-1076.
[21]
Dong, H. L.; Fu, X. L.; Liu, J.; Wang, Z. R.; Hu, W. P. 25th Anniversary article: Key points for high-mobility organic field-effect transistors. Adv. Mater. 2013, 25, 6158-6183.
[22]
Anthony, J. E. Functionalized acenes and heteroacenes for organic electronics. Chem. Rev. 2006, 106, 5028-5048.
[23]
Wang, C. L.; Dong, H. L.; Jiang, L.; Hu, W. P. Organic semiconductor crystals. Chem. Soc. Rev. 2018, 47, 422-500.
[24]
Smits, E. C. P.; Mathijssen, S. G. J.; van Hal, P. A.; Setayesh, S.; Geuns, T. C.; Mutsaers, K. A. H. A.; Cantatore, E.; Wondergem, H. J.; Werzer, O.; Resel, R. et al. Bottom-up organic integrated circuits. Nature 2008, 455, 956-959.
[25]
Ruiz, R.; Papadimitratos, A.; Mayer, A. C.; Malliaras, G. G. Thickness dependence of mobility in pentacene thin-film transistors. Adv. Mater. 2005, 17, 1795-1798.
[26]
Shi, Y. J.; Jiang, L.; Liu, J.; Tu, Z. Y.; Hu, Y. Y.; Wu, Q. H.; Yi, Y. P.; Gann, E.; McNeill, C. R.; Li, H. Y. et al. Bottom-up growth of n-type monolayer molecular crystals on polymeric substrate for optoelectronic device applications. Nat. Commun. 2018, 9, 2933.
[27]
Tang, Q. X.; Jiang, L.; Tong, Y. H.; Li, H. X.; Liu, Y. L.; Wang, Z. H.; Hu, W. P.; Liu, Y. Q.; Zhu. D. B. Micrometer-and nanometer-sized organic single-crystalline transistors. Adv. Mater. 2008, 20, 2947-2951.
[28]
Greiner, M. T.; Chai, L.; Helander, M. G.; Tang, W. M.; Lu, Z. H. Metal/metal-oxide interfaces: How metal contacts affect the work function and band structure of MoO3. Adv. Funct. Mater. 2013, 23, 215-226.
[29]
Baeg, K. J.; Kim, J.; Khim, D.; Caironi, M.; Kim, D. Y. You, I. K.; Quinn, J.; Facchetti, R. A.; Noh, Y. Y. Charge injection engineering of ambipolar field-effect transistors for high-performance organic complementary circuits. ACS Appl. Mater. Interfaces 2011, 3, 3205-3214.
[30]
Qin, Z. S.; Gao, H. K.; Liu, J. Y.; Zhou, K.; Li, J.; Dang, Y. Y.; Huang, L.; Deng, H. X.; Zhang, X. T.; Dong, H. L. et al. High-efficiency single-component organic light-emitting transistors. Adv. Mater. 2019, 31, 1903175.
Nano Research
Pages 1976-1981
Cite this article:
Zheng L, Li J, Zhou K, et al. Molecular-scale integrated multi-functions for organic light-emitting transistors. Nano Research, 2020, 13(7): 1976-1981. https://doi.org/10.1007/s12274-020-2851-4
Topics:
Part of a topical collection:

1006

Views

33

Crossref

N/A

Web of Science

32

Scopus

4

CSCD

Altmetrics

Received: 26 January 2020
Revised: 08 April 2020
Accepted: 04 May 2020
Published: 23 May 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return