AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ofloxacin loaded MoS2 nanoflakes for synergistic mild-temperature photothermal/antibiotic therapy with reduced drug resistance of bacteria

Yue Huang1,§Qiang Gao1,§Xu Li1Yifan Gao1Haijie Han2Qiao Jin1( )Ke Yao2Jian Ji1
MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
Eye Center, the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, China

§ Yue Huang and Qiang Gao contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Antibiotic resistance is an increasingly serious threat to global public health, which can lead to the decrease of the effectiveness of antibiotics. The combination therapy of antibiotic and mild temperature photothermal therapy (PTT) is adopted to address this issue in this work. An antibiotic-loaded nanoplatform is fabricated based on two-dimensional (2D) molybdenum disulfide (MoS2) nanoflakes as effective near-infrared (NIR) photothermal agent. The MoS2 nanoflakes is modified with positively charged quaternized chitosan (QCS) to improve the dispersion stability and enhance the interaction between MoS2 nanoflakes and bacterial membrane. The QCS modified MoS2 nanoflakes (QCS-MoS2) is expected to adhere onto the membrane of methicillin-resistant Staphylococcus aureus (MRSA) and depolarize the bacterial membrane by local hyperthermia under NIR irradiation. A first-line antibiotic, ofloxacin (OFLX), can be loaded onto QCS-MoS2 by π-π stacking and hydrophobic interaction. Due to the combined antibiotic-photothermal therapy, superior bactericidal ability was achieved at mild temperature (45 °C) and low antibiotic concentration. Such synergistic mild-temperature photothermal/antibiotic therapy can not only avoid the damage to neighboring tissue by PTT, but also reduce the development of drug resistance, providing an innovative way for the treatment of bacterial infections.

Electronic Supplementary Material

Download File(s)
12274_2020_2853_MOESM1_ESM.pdf (2.2 MB)

References

[1]
Levy, S. B.; Marshall, B. Antibacterial resistance worldwide: Causes, challenges and responses. Nat. Med. 2004, 10, S122-S129.
[2]
Taubes, G. The bacteria fight back. Science 2008, 321, 356-361.
[3]
Li, B. Y.; Webster, T. J. Bacteria antibiotic resistance: New challenges and opportunities for implant-associated orthopedic infections. J. Orthop. Res. 2018, 36, 22-32.
[4]
Alanis, A. J. Resistance to antibiotics: Are we in the post-antibiotic era? Arch. Med. Res. 2005, 36, 697-705.
[5]
Yang, X. L.; Zhang, L. M.; Jiang, X. Y. Aminosaccharide-gold nanoparticle assemblies as narrow-spectrum antibiotics against methicillin-resistant Staphylococcus aureus. Nano Res. 2018, 11, 6237-6243.
[6]
Roy, I.; Shetty, D.; Hota, R.; Baek, K.; Kim, J.; Kim, C.; Kappert, S.; Kim, K. A Multifunctional subphthalocyanine nanosphere for targeting, labeling, and killing of antibiotic-resistant bacteria. Angew. Chem., Int. Ed. 2015, 54, 15152-15155.
[7]
Hu, D. F.; Deng, Y. Y.; Jia, F.; Jin, Q.; Ji, J. Surface charge switchable supramolecular nanocarriers for nitric oxide synergistic photodynamic eradication of biofilms. ACS Nano 2020, 14, 347-359.
[8]
Hu, X. N.; Zhao, Y. Y.; Hu, Z. J.; Saran, A.; Hou, S.; Wen, T.; Liu, W. Q.; Ji, Y. L.; Jiang, X. Y.; Wu, X. C. Gold nanorods core/AgPt alloy nanodots shell: A novel potent antibacterial nanostructure. Nano Res. 2013, 6, 822-835.
[9]
Hu, D. F.; Li, H.; Wang, B. L.; Ye, Z.; Lei, W. X.; Jia, F.; Jin, Q.; Ren, K. F.; Ji, J. Surface-adaptive gold nanoparticles with effective adherence and enhanced photothermal ablation of methicillin-resistant Staphylococcus aureus biofilm. ACS Nano 2017, 11, 9330-9339.
[10]
Yu, Q.; Chen, H. Smart antibacterial surfaces with switchable function to kill and release bacteria. Acta Polym. Sin. 2020, 51, 319-325.
[11]
Wei, T.; Tang, Z. C.; Yu, Q.; Chen, H. Smart antibacterial surfaces with switchable bacteria-killing and bacteria-releasing capabilities. ACS Appl. Mater. Interfaces 2017, 9, 37511-37523.
[12]
Li, J.; Liu, X. M.; Tan, L.; Cui, Z. D.; Yang, X. J.; Liang, Y. Q.; Li, Z. Y.; Zhu, S. L.; Zheng, Y. F.; Yeung, K. W. K. et al. Zinc-doped Prussian blue enhances photothermal clearance of Staphylococcus aureus and promotes tissue repair in infected wounds. Nat. Commun. 2019, 10, 4490.
[13]
Gao, Y. F.; Wang, J.; Hu, D. F.; Deng, Y. Y.; Chen, T. T.; Jin, Q.; Ji, J. Bacteria-targeted supramolecular photosensitizer delivery vehicles for photodynamic ablation against biofilms. Macromol. Rapid Commun. 2019, 40, 1800763.
[14]
Mao, C. Y.; Xiang, Y. M.; Liu, X. M.; Cui, Z. D.; Yang, X. J.; Li, Z. Y.; Zhu, S. L.; Zheng, Y. F.; Yeung, K. W. K.; Wu, S. L. Repeatable photodynamic therapy with triggered signaling pathways of fibroblast cell proliferation and differentiation to promote bacteria-accompanied wound healing. ACS Nano 2018, 12, 1747-1759.
[15]
Yin, W. Y.; Yu, J.; Lv, F. T.; Yan, L.; Zheng, L. R.; Gu, Z. J.; Zhao, Y. L. Functionalized nano-MoS2 with peroxidase catalytic and near-infrared photothermal activities for safe and synergetic wound antibacterial applications. ACS Nano 2016, 10, 11000-11011.
[16]
Korupalli, C.; Huang, C. C.; Lin, W. C.; Pan, W. Y.; Lin, P. Y.; Wan, W. L.; Li, M. J.; Chang, Y.; Sung, H. W. Acidity-triggered charge-convertible nanoparticles that can cause bacterium-specific aggregation in situ to enhance photothermal ablation of focal infection. Biomaterials 2017, 116, 1-9.
[17]
Fan, X. L.; Li, H. Y.; Ye, W. Y.; Zhao, M. Q.; Huang, D. N.; Fang, Y.; Zhou, B. Q.; Ren, K. F.; Ji, J.; Fu, G. S. Magainin-modified polydopamine nanoparticles for photothermal killing of bacteria at low temperature. Colloids Surf. B. 2019, 183, 110423.
[18]
Qu, Y. C.; Wei, T.; Zhao, J.; Jiang, S. B.; Yang, P.; Yu, Q.; Chen, H. Regenerable smart antibacterial surfaces: Full removal of killed bacteria via a sequential degradable layer. J. Mater. Chem. B 2018, 6, 3946-3955.
[19]
Chen, J. Q.; Ning, C. Y.; Zhou, Z. N.; Yu, P.; Zhu, Y.; Tan, G. X.; Mao, C. B. Nanomaterials as photothermal therapeutic agents. Prog. Mater. Sci. 2019, 99, 1-26
[20]
Gao, Q.; Zhang, X.; Yin, W. Y.; Ma, D. Q.; Xie, C. J.; Zheng, L. R.; Dong, X. H.; Mei, L. Q.; Yu, J.; Wang, C. Z. et al. Functionalized MoS2 nanovehicle with near-infrared laser-mediated nitric oxide release and photothermal activities for advanced bacteria-infected wound therapy. Small 2018, 14, 1802290.
[21]
Hu, D. F.; Zou, L. Y.; Li, B. C.; Hu, M.; Ye, W. Y.; Ji, J. Photothermal killing of methicillin-resistant Staphylococcus aureus by bacteria-targeted polydopamine nanoparticles with nano-localized hyperpyrexia. ACS Biomater. Sci. Eng. 2019, 5, 5169-5179.
[22]
Sun, P. P.; Zhang, Y.; Ran, X.; Liu, C. Y.; Wang, Z. Z.; Ren, J. S.; Qu, X. G. Phytochemical-encapsulated nanoplatform for “on-demand” synergistic treatment of multidrug-resistant bacteria. Nano Res. 2018, 11, 3762-3770.
[23]
He, D. F.; Yang, T.; Qian, W.; Qi, C.; Mao, L.; Yu, X. Z.; Zhu, H. F.; Luo, G. X.; Deng, J. Combined photothermal and antibiotic therapy for bacterial infection via acidity-sensitive nanocarriers with enhanced antimicrobial performance. Appl. Mater. Today 2018, 12, 415-429.
[24]
Tan, L.; Li, J.; Liu, X. M.; Cui, Z. D.; Yang, X. J.; Zhu, S. L.; Li, Z. Y.; Yuan, X. B.; Zheng, Y. F.; Yeung, K. W. K. et al. Rapid biofilm eradication on bone implants using red phosphorus and near-infrared light. Adv. Mater. 2018, 30, 1801808.
[25]
Wei, T.; Yu, Q.; Chen, H. Responsive and synergistic antibacterial coatings: Fighting against bacteria in a smart and effective way. Adv. Healthcare Mater. 2019, 8, 1801381.
[26]
Chen, M.; Chen, S. Z.; He, C. Y.; Mo, S. G.; Wang, X. Y.; Liu, G.; Zheng, N. F. Safety profile of two-dimensional Pd nanosheets for photothermal therapy and photoacoustic imaging. Nano Res. 2017, 10, 1234-1248.
[27]
Zong, L. Y.; Wu, H. X.; Lin, H.; Chen, Y. A polyoxometalate-functionalized two-dimensional titanium carbide composite MXene for effective cancer theranostics. Nano Res. 2018, 11, 4149-4168.
[28]
Bolotsky, A.; Butler, D.; Dong, C. Y.; Gerace, K.; Glavin, N. R.; Muratore, C.; Robinson, J. A.; Ebrahimi, A. Two-dimensional materials in biosensing and healthcare: From in vitro diagnostics to optogenetics and beyond. ACS Nano 2019, 13, 9781-9810.
[29]
Tan, C. L.; Zhang, H. Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem. Soc. Rev. 2015, 44, 2713-2731.
[30]
Liu, T.; Shi, S. X.; Liang, C.; Shen, S. D.; Cheng, L.; Wang, C.; Song, X. J.; Goel, S.; Barnhart, T. E.; Cai, W. B. et al. Iron oxide decorated MoS2 nanosheets with double PEGylation for chelator-free radiolabeling and multimodal imaging guided photothermal therapy. ACS Nano 2015, 9, 950-960.
[31]
Feng, Z. Z.; Liu, X. M.; Tan, L.; Cui, Z. D.; Yang, X. J.; Li, Z. Y.; Zheng, Y. F.; Yeung, K. W. K.; Wu, S. L. Electrophoretic deposited stable chitosan@MoS2 coating with rapid in situ bacteria-killing ability under dual-light irradiation. Small 2018, 14, 1704347.
[32]
Yin, W. Y.; Yan, L.; Yu, J.; Tian, G.; Zhou, L. J.; Zheng, X. P.; Zhang, X.; Yong, Y.; Li, J.; Gu, Z. J. et al. High-throughput synthesis of single-layer MoS2 nanosheets as a near-infrared photothermal-triggered drug delivery for effective cancer therapy. ACS Nano 2014, 8, 6922-6933.
[33]
Yadav, V.; Roy, S.; Singh, P.; Khan, Z.; Jaiswal, A. 2D MoS2-based nanomaterials for therapeutic, bioimaging, and biosensing applications. Small 2019, 15, 1803706.
[34]
Zhu, X. B.; Ji, X. Y.; Kong, N.; Chen, Y. H.; Mahmoudi, M.; Xu, X. D.; Ding, L.; Tao, W.; Cai, T.; Li, Y. J. et al. Intracellular mechanistic understanding of 2D MoS2 nanosheets for anti-exocytosis-enhanced synergistic cancer therapy. ACS Nano 2018, 12, 2922-2938.
[35]
Nicolosi, V.; Chhowalla, M.; Kanatzidis, M. G.; Strano, M. S.; Coleman, J. N. Liquid exfoliation of layered materials. Science 2013, 340, 1226419.
[36]
Chai, M. Y.; Gao, Y. F.; Liu, J.; Deng, Y. Y.; Hu, D. F.; Jin, Q.; Ji, J. Polymyxin B-polysaccharide polyion nanocomplex with improved biocompatibility and unaffected antibacterial activity for acute lung infection management. Adv. Healthcare Mater. 2020, 9, 1901542.
[37]
Yao, Q. Q.; Ye, Z.; Sun, L.; Jin, Y. Y.; Xu, Q. W.; Yang, M.; Wang, Y.; Zhou, Y. L.; Ji, J.; Chen, H. et al. Bacterial infection microenvironment-responsive enzymatically degradable multilayer films for multifunctional antibacterial properties. J. Mater. Chem. B 2017, 5, 8532-8541.
[38]
Liu, T.; Wang, C.; Gu, X.; Gong, H.; Cheng, L.; Shi, X. Z.; Feng, L. Z.; Sun, B. Q.; Liu, Z. Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer. Adv. Mater. 2014, 26, 3433-3440.
[39]
Cho, J.; Grant, J.; Piquette-Miller, M.; Allen, C. Synthesis and physicochemical and dynamic mechanical properties of a water-soluble chitosan derivative as a biomaterial. Biomacromolecules 2006, 7, 2845-2855.
[40]
Wang, J.; Zhuo, L. G.; Liao, W.; Yang, X.; Tang, Z. H.; Chen, Y.; Luo, S. Z.; Zhou, Z. J. Assessing the biocidal activity and investigating the mechanism of oligo-p-phenylene-ethynylenes. ACS Appl. Mater. Interfaces 2017, 9, 7964-7971.
[41]
Zou, X. F.; Zhang, L.; Wang, Z. J.; Luo, Y. Mechanisms of the antimicrobial activities of graphene materials. J. Am. Chem. Soc. 2016, 138, 2064-2077.
[42]
Yang, X.; Li, J.; Liang, T.; Ma, C. Y.; Zhang, Y. Y.; Chen, H. Z.; Hanagata, N.; Su, H. X.; Xu, M. S. Antibacterial activity of two-dimensional MoS2 sheets. Nanoscale 2014, 6, 10126-10133.
Nano Research
Pages 2340-2350
Cite this article:
Huang Y, Gao Q, Li X, et al. Ofloxacin loaded MoS2 nanoflakes for synergistic mild-temperature photothermal/antibiotic therapy with reduced drug resistance of bacteria. Nano Research, 2020, 13(9): 2340-2350. https://doi.org/10.1007/s12274-020-2853-2
Topics:

855

Views

77

Crossref

N/A

Web of Science

77

Scopus

11

CSCD

Altmetrics

Received: 22 March 2020
Revised: 30 April 2020
Accepted: 02 May 2020
Published: 01 June 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return