AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ag doped urchin-like α-MnO2 toward efficient and bifunctional electrocatalysts for Li-O2 batteries

Linna Dai1Qing Sun1Lina Chen3( )Huanhuan Guo1Xiangkun Nie1Jun Cheng1Jianguang Guo1Jianwei Li1Jun Lou2( )Lijie Ci1,3( )
Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), Research Center for Carbon Nanomaterials, School of Materials Science and Engineering, Shandong University, Jinan 250061, China
Department of Materials Science and Nano Engineering, Rice University, Houston, Texas 77005, USA
School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
Show Author Information

Graphical Abstract

Abstract

Rechargeable Li-O2 batteries (LOBs) have been receiving intensive attention because of their ultra-high theoretical energy density close to the gasoline. Herein, Ag modified urchin-like α-MnO2 (Ag-MnO2) material with hierarchical porous structure is obtained by a facile one-step hydrothermal method. Ag-MnO2 possesses thick nanowires and presents hierarchical porous structure of mesopores and macropores. The unique structure can expose more active sites, and provide continuous pathways for O2 and discharge products as well. The doping of Ag leads to the change of electronic distribution in α-MnO2 (i.e., more oxygen vacancies), which play important roles in improving their intrinsic catalytic activity and conductivity. As a result, LOBs with Ag-MnO2 catalysts exhibit lower overpotential, higher discharge specific capacity and much better cycle stability compared to pure α-MnO2. LOBs with Ag-MnO2 catalysts exhibit a superior discharge specific capacity of 13,131 mA·h·g-1 at a current density of 200 mA·g-1, a good cycle stability of 500 cycles at the capacity of 500 mA·h·g-1. When current density is increased to 400 mA·g-1, LOBs still retain a long lifespan of 170 cycles at a limited capacity of 1,000 mA·h·g-1.

Electronic Supplementary Material

Download File(s)
12274_2020_2855_MOESM1_ESM.pdf (2.1 MB)

References

[1]
Ye, M. H.; Zhang, Z. P.; Zhao, Y.; Qu, L. T. Graphene platforms for smart energy generation and storage. Joule 2018, 2, 245-268.
[2]
Aurbach, D.; McCloskey, B. D.; Nazar, L. F.; Bruce, P. G. Advances in understanding mechanisms underpinning lithium-air batteries. Nat. Energy 2016, 1, 16128.
[3]
Sun, Q.; Li, D. P.; Cheng, J.; Dai, L. N.; Guo, J. G.; Liang, Z.; Ci, L. J. Nitrogen-doped carbon derived from pre-oxidized pitch for surface dominated potassium-ion storage. Carbon 2019, 155, 601-610.
[4]
Han, M. M.; Huang, J. W.; Liang, S. Q.; Shan, L. T.; Xie, X. S.; Yi, Z. Y.; Wang, Y. R.; Guo, S.; Zhou, J. Oxygen defects in β-MnO2 enabling high-performance rechargeable aqueous zinc/manganese dioxide battery. iScience 2020, 23, 100797.
[5]
Long, J. P.; Hou, Z. Q.; Shu, C. Z.; Han, C.; Li, W. J.; Huang, R.; Wang, J. Z. Free-standing three-dimensional CuCo2S4 nanosheet array with high catalytic activity as an efficient oxygen electrode for lithium-oxygen batteries. ACS Appl. Mater. Interfaces. 2019, 11, 3834-3842.
[6]
Cao, X. C.; Zheng, X. J.; Sun, Z. H.; Jin, C.; Tian, J. H.; Sun, S. R.; Yang, R. Z. Oxygen defect-ridden molybdenum oxide-coated carbon catalysts for Li-O2 battery cathodes. Appl. Catal. B: Environ. 2019, 253, 317-322.
[7]
Jiang, Z. L.; Sun, H.; Shi, W. K.; Zhou, T. H.; Hu, J. Y.; Cheng, J. Y.; Hu, P. F.; Sun, S. G. Co3O4 nanocage derived from metal-organic frameworks: An excellent cathode catalyst for rechargeable Li-O2 battery. Nano Res. 2019, 12, 1555-1562.
[8]
Zheng, M. B.; Jiang, J.; Lin, Z. X.; He, P.; Shi, Y.; Zhou, H. S. Stable voltage cutoff cycle cathode with tunable and ordered porous structure for Li-O2 batteries. Small 2018, 14, 1803607.
[9]
Wang, D.; Mu, X. W.; He, P.; Zhou, H. S. Materials for advanced Li-O2 batteries: Explorations, challenges and prospects. Mater. Today 2019, 26, 87-99.
[10]
Cai, Y. C.; Hou, Y. P.; Lu, Y.; Chen, J. Recent progress on catalysts for the positive electrode of aprotic lithium-oxygen batteries. Inorganics 2019, 7, 69.
[11]
Li, J. B.; Shu, C. Z.; Hu, A. J.; Ran, Z. Q.; Li, M. L.; Zheng, R. X.; Long, J. P. Tuning oxygen non-stoichiometric surface via defect engineering to promote the catalysis activity of Co3O4 in Li-O2 batteries. Chem. Eng. J. 2020, 381, 122678.
[12]
Lu, X. Y.; Hao, G. P.; Sun, X. L.; Kaskel, S.; Schmidt, O. G. Highly dispersed metal and oxide nanoparticles on ultra-polar carbon as efficient cathode materials for Li-O2 batteries. J. Mater. Chem. A 2017, 5, 6284-6291.
[13]
Xu, S. M.; Liang, X.; Ren, Z. C.; Wang, K. X.; Chen, J. S. Free-standing air cathodes based on 3D hierarchically porous carbon membranes: Kinetic overpotential of continuous macropores in Li-O2 batteries. Angew. Chem., Int. Ed. 2018, 57, 6825-6829.
[14]
Wang, J. J.; Li, Y. L.; Sun, X. L. Challenges and opportunities of nanostructured materials for aprotic rechargeable lithium-air batteries. Nano Energy 2013, 2, 443-467.
[15]
Jung, J. W.; Jang, J. S.; Yun, T. G.; Yoon, K. R.; Kim, I. D. Three-dimensional nanofibrous air electrode assembled with carbon nanotubes-bridged hollow Fe2O3 nanoparticles for high-performance lithium-oxygen batteries. ACS. Appl. Mater. Interfaces 2018, 10, 6531-6540.
[16]
Wu, F.; Xing, Y.; Zeng, X. Q.; Yuan, Y. F.; Zhang, X. Y.; Shahbazian-Yassar, R.; Wen, J. G.; Miller, D. J.; Li, L.; Chen, R. J. et al. Platinum-coated hollow graphene nanocages as cathode used in lithium-oxygen batteries. Adv. Funct. Mater. 2016, 26, 7626-7633.
[17]
Jian, Z. L.; Liu, P.; Li, F. J.; He, P.; Guo, X. W.; Chen, M. W.; Zhou, H. S. Core-shell-structured CNT@RuO2 composite as a high-performance cathode catalyst for rechargeable Li-O2 batteries. Angew. Chem., Int. Ed. 2014, 53, 442-446.
[18]
Yin, Y. B.; Xu, J. J.; Liu, Q. C.; Zhang, X. B. Macroporous interconnected hollow carbon nanofibers inspired by golden-toad eggs toward a binder-free, high-rate, and flexible electrode. Adv. Mater. 2016, 28, 7494-7500.
[19]
Shen, C.; Wen, Z. Y.; Wang, F.; Wu, T.; Wu, X. W. Cobalt-metal-based cathode for lithium-oxygen battery with improved electrochemical performance. ACS Catal. 2016, 6, 4149-4153.
[20]
Zhang, F.; Wei, M. H.; Sui, J.; Jin, C.; Luo, Y.; Bie, S. Y.; Yang, R. Z. Cobalt phosphide microsphere as an efficient bifunctional oxygen catalyst for Li-air batteries. J. Alloy. Compd. 2018, 750, 655-658.
[21]
Jung, K. N.; Lee, J. I.; Yoon, S.; Yeon, S. H.; Chang, W.; Shin, K. H.; Lee, J. W. Manganese oxide/carbon composite nanofibers: Electrospinning preparation and application as a bi-functional cathode for rechargeable lithium-oxygen batteries. J. Mater. Chem. 2012, 22, 21845-21848.
[22]
Liu, B.; Sun, Y. L.; Liu, L.; Xu, S.; Yan, X. B. Advances in manganese-based oxides cathodic electrocatalysts for Li-air batteries. Adv. Funct. Mater. 2018, 28, 1704973.
[23]
Gong, H.; Wang, T.; Xue, H. R.; Lu, X. Y.; Xia, W.; Song, L.; Zhang, S. T.; He, J. P.; Ma, R. Z. Spatially-controlled porous nanoflake arrays derived from MOFs: An efficiently long-life oxygen electrode. Nano Res. 2019, 12, 2528-2534.
[24]
Zhang, S. P.; Wen, Z. Y.; Lu, Y.; Wu, X. W.; Yang, J. H. Highly active mixed-valent MnOx spheres constructed by nanocrystals as efficient catalysts for long-cycle Li-O2 batteries. J. Mater. Chem. A 2016, 4, 17129-17137.
[25]
Guo, X.; Zhou, J.; Bai, C. L.; Li, X. K.; Fang, G. Z.; Liang, S. Q. Zn/MnO2 battery chemistry with dissolution-deposition mechanism. Mater. Today Energy 2020, 16, 100396.
[26]
Débart, A.; Paterson, A. J.; Bao, J. L.; Bruce, P. G. α-MnO2 nanowires: A catalyst for the O2 electrode in rechargeable lithium batteries. Angew. Chem., Int. Ed. 2008, 47, 4521-4524.
[27]
Cao, Y.; Wei, Z. K.; He, J.; Zang, J.; Zhang, Q.; Zheng, M. S.; Dong, Q. F. α-MnO2 nanorods grown in situ on graphene as catalysts for Li-O2 batteries with excellent electrochemical performance. Energy Environ. Sci. 2012, 5, 9765-9768.
[28]
Zhang, P.; He, M.; Xu, S.; Yan, X. B. The controlled growth of porous δ-MnO2 nanosheets on carbon fibers as a bi-functional catalyst for rechargeable lithium-oxygen batteries. J. Mater. Chem. A 2015, 3, 10811-10818.
[29]
Liu, S. Y.; Zhu, Y. G.; Xie, J.; Huo, Y.; Yang, H. Y.; Zhu, T. J.; Cao, G. S.; Zhao, X. B.; Zhang, S. C. Direct growth of flower-like δ-MnO2 on three-dimensional graphene for high-performance rechargeable Li-O2 batteries. Adv. Energy Mater. 2014, 4, 1301960.
[30]
Gu, T. H.; Agyeman, D. A.; Shin, S. J.; Jin, X. Y.; Lee, J. M.; Kim, H.; Kang, Y. M.; Hwang, S. J. α-MnO2 nanowire-anchored highly oxidized cluster as a catalyst for Li-O2 batteries: Superior electrocatalytic activity and high functionality. Angew. Chem., Int. Ed. 2018, 57, 15984-15989.
[31]
Lu, M. H.; Qu, J. L.; Yao, Q. F.; Xu, C. H.; Zhan, Y.; Xie, J. P.; Lee, J. Y. Exploring metal nanoclusters for lithium-oxygen batteries. ACS Appl. Mater. Interfaces 2015, 7, 5488-5496.
[32]
Jung, K. N.; Riaz, A.; Lee, S. B.; Lim, T. H.; Park, S. J.; Song, R. H.; Yoon, S.; Shin, K. H.; Lee, J. W. Urchin-like α-MnO2 decorated with Au and Pd as a bi-functional catalyst for rechargeable lithium-oxygen batteries. J. Power Sources 2013, 244, 328-335.
[33]
Davis, D. J.; Lambert, T. N.; Vigil, J. A.; Rodriguez, M. A.; Brumbach, M. T.; Coker, E. N.; Limmer, S. J. Role of Cu-ion doping in Cu-α-MnO2 nanowire electrocatalysts for the oxygen reduction reaction. J. Phys. Chem. C 2014, 118, 17342-17350.
[34]
Ye, Z. G.; Li, T.; Ma, G.; Dong, Y. H.; Zhou, X. L. Metal-ion (Fe, V, Co, and Ni)-doped MnO2 ultrathin nanosheets supported on carbon fiber paper for the oxygen evolution reaction. Adv. Funct. Mater. 2017, 27, 1704083.
[35]
Chen, L.; Chen, L.; Zhai, W.; Li, D. P.; Lin, Y. X.; Guo, S. R.; Feng, J. K.; Zhang, L.; Song, L.; Si, P. C. et al. Tunable synthesis of LixMnO2 nanowires for aqueous Li-ion hybrid supercapacitor with high rate capability and ultra-long cycle life. J. Power Sources 2019, 413, 302-309.
[36]
Zhang, J.; Luan, Y. P.; Lyu, Z.; Wang, L. J.; Xu, L. L.; Yuan, K. D.; Pan, F.; Lai, M.; Liu, Z. L.; Chen, W. Synthesis of hierarchical porous δ-MnO2 nanoboxes as an efficient catalyst for rechargeable Li-O2 batteries. Nanoscale 2015, 7, 14881-14888.
[37]
Wu, K.; Sun, L. D.; Yan, C. H. Recent progress in well-controlled synthesis of ceria-based nanocatalysts towards enhanced catalytic performance. Adv. Energy Mater. 2016, 6, 1600501.
[38]
Dong, R. T.; Ye, Q. L.; Kuang, L. L.; Lu, X.; Zhang, Y.; Zhang, X.; Tan, G. J.; Wen, Y. X.; Wang, F. Enhanced supercapacitor performance of Mn3O4 nanocrystals by doping transition-metal ions. ACS Appl. Mater. Interfaces 2013, 5, 9508-9516.
[39]
Li, X. P.; Liu, J.; Zhao, Y. H.; Zhang, H. J.; Du, F. P.; Lin, C.; Zhao, T. J.; Sun, Y. H. Significance of surface trivalent manganese in the electrocatalytic activity of water oxidation in undoped and doped MnO2 nanowires. ChemCatChem 2015, 7, 1848-1856.
[40]
Duan, Y. P.; Liu, Z.; Jing, H.; Zhang, Y. H.; Li, S. Q. Novel microwave dielectric response of Ni/Co-doped manganese dioxides and their microwave absorbing properties. J. Mater. Chem. 2012, 22, 18291-18299.
[41]
Maitra, U.; Naidu, B. S.; Govindaraj, A.; Rao, C. N. Importance of trivalency and the eg1 configuration in the photocatalytic oxidation of water by Mn and Co oxides. Proc. Natl. Acad. Sci. USA 2013, 110, 11704-11707.
[42]
Jin, X. Y.; Park, M.; Shin, S. J.; Jo, Y.; Kim, M. G.; Kim, H.; Kang, Y. M.; Hwang, S. J. Synergistic control of structural disorder and surface bonding nature to optimize the functionality of manganese oxide as an electrocatalyst and a cathode for Li-O2 batteries. Small 2019, 16, 1903265.
[43]
Luo, J.; Zhu, H. T.; Fan, H. M.; Liang, J. K.; Shi, H. L.; Rao, G. H.; Li, J. B.; Du, Z. M.; Shen, Z. X. Synthesis of single-crystal tetragonal α-MnO2 nanotubes. J. Phys. Chem. C 2008, 112, 12594-12598.
[44]
Wang, C. X.; Ma, J. Z.; Liu, F. D.; He, H.; Zhang, R. D. The effects of Mn2+ precursors on the structure and ozone decomposition activity of cryptomelane-type manganese oxide (OMS-2) catalysts. J. Phys. Chem. C 2015, 119, 23119-23126.
[45]
Deng, H.; Kang, S. Y.; Ma, J. Z.; Zhang, C. B.; He, H. Silver incorporated into cryptomelane-type manganese oxide boosts the catalytic oxidation of benzene. Appl. Catal. B: Environ. 2018, 239, 214-222.
[46]
Park, J.; Jeong, J.; Lee, S.; Jo, C.; Lee, J. Effect of mesoporous structured cathode materials on charging potentials and rate capability of lithium-oxygen batteries. ChemSusChem 2015, 8, 3146-3152.
[47]
Olivares-Marín, M.; Palomino, P.; Enciso, E.; Tonti, D. Simple method to relate experimental pore size distribution and discharge capacity in cathodes for Li/O2 batteries. J. Phys. Chem. C 2014, 118, 20772-20783.
[48]
Cao, Y.; Lu, H. M.; Hong, Q. S.; Xu, B. B.; Wang, J. R.; Deng, Y.; Yang, W. W.; Cai, W. Synthesis of Ag/Co@CoO NPs anchored within N-doped hierarchical porous hollow carbon nanofibers as a superior free-standing cathode for Li O2 batteries. Carbon 2019, 144, 280-288.
[49]
Gao, R.; Yang, Z. Z.; Zheng, L. R.; Gu, L.; Liu, L.; Lee, Y.; Hu, Z. B.; Liu, X. F. Enhancing the catalytic activity of Co3O4 for Li-O2 batteries through the synergy of surface/interface/doping engineering. ACS Catal. 2018, 8, 1955-1963.
[50]
Li, J. B.; Shu, C. Z.; Ran, Z. Q.; Li, M. L.; Zheng, R. X.; Long, J. P. Heteroatom-induced electronic structure modulation of vertically oriented oxygen vacancy-rich NiFe layered double oxide nanoflakes to boost bifunctional catalytic activity in Li-O2 battery. ACS Appl. Mater. Interfaces 2019, 11, 29868-29878.
[51]
Liu, W. J.; Bao, J.; Xu, L.; Guan, M. L.; Wang, Z. L.; Qiu, J. X.; Huang, Y. P.; Xia, J. X.; Lei, Y. C.; Li, H. M. NiCo2O4 ultrathin nanosheets with oxygen vacancies as bifunctional electrocatalysts for Zn-air battery. Appl. Surf. Sci. 2019, 478, 552-559.
[52]
Bao, J.; Zhang, X. D.; Fan, B.; Zhang, J. J.; Zhou, M.; Yang, W. L.; Hu, X.; Wang, H.; Pan, B. C.; Xie, Y. Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. Angew. Chem., Int. Ed. 2015, 54, 7399-7404.
[53]
Xu, J. J.; Liu, Q. C.; Yu, Y.; Wang, J.; Yan, J. M.; Zhang, X. B. In situ construction of stable tissue-directed/reinforced bifunctional separator/protection film on lithium anode for lithium-oxygen batteries. Adv. Mater. 2017, 29, 1606552.
[54]
Yin, J.; Carlin, J. M.; Kim, J.; Li, Z.; Park, J. H.; Patel, B.; Chakrapani, S.; Lee, S.; Joo, Y. L. Synergy between metal oxide nanofibers and graphene nanoribbons for rechargeable lithium-oxygen battery cathodes. Adv. Energy Mater. 2015, 5, 1401412.
[55]
Dai, L. N.; Sun, Q.; Guo, J. G.; Cheng, J.; Xu, X. Y.; Guo, H. H.; Li, D. P.; Chen, L.; Si, P. C.; Lou, J. et al. Mesoporous Mn2O3 rods as a highly efficient catalyst for Li-O2 battery. J. Power Sources 2019, 435, 226833.
[56]
Kundu, D.; Black, R.; Berg, E. J.; Nazar, L. F. A highly active nanostructured metallic oxide cathode for aprotic Li-O2 batteries. Energy Environ. Sci. 2015, 8, 1292-1298.
[57]
Ghouri, Z. K.; Zahoor, A.; Barakat, N. A. M.; Alsoufi, M. S.; Bawazeer, T. M.; Mohamed, A. F.; Kim, H. Y. The (2×2) tunnels structured manganese dioxide nanorods with α phase for lithium air batteries. Superlattices Microstruct. 2016, 90, 184-190.
[58]
Zahoor, A.; Jang, H. S.; Jeong, J. S.; Christy, M.; Hwang, Y. J.; Nahm, K. S. A comparative study of nanostructured α and δ MnO2 for lithium oxygen battery application. RSC Adv. 2014, 4, 8973-8977.
[59]
Jang, H.; Zahoor, A.; Kim, Y.; Christy, M.; Oh, M. Y.; Aravindan, V.; Lee, Y. S.; Nahm, K. S. Tailoring three dimensional α-MnO2/RuO2 hybrid nanostructure as prospective bifunctional catalyst for Li-O2 batteries. Electrochim. Acta 2016, 212, 701-709.
[60]
Salehi, M.; Shariatinia, Z. Synthesis of star-like MnO2-CeO2/CNT composite as an efficient cathode catalyst applied in lithium-oxygen batteries. Electrochim. Acta 2016, 222, 821-829.
[61]
Bi, R.; Liu, G. X.; Zeng, C.; Wang, X. P.; Zhang, L.; Qiao, S. Z. 3D hollow α-MnO2 framework as an efficient electrocatalyst for lithium-oxygen batteries. Small 2019, 15, 1804958.
[62]
Qin, Y.; Lu, J.; Du, P.; Chen, Z. H.; Ren, Y.; Wu, T. P.; Miller, J. T.; Wen, J. G.; Miller, D. J.; Zhang, Z. C. et al. In situ fabrication of porous-carbon-supported α-MnO2 nanorods at room temperature: Application for rechargeable Li-O2 batteries. Energy Environ. Sci. 2013, 6, 519-531.
[63]
Kim, B. G.; Jo, C.; Shin, J.; Mun, Y.; Lee, J.; Choi, J. W. Ordered mesoporous titanium nitride as a promising carbon-free cathode for aprotic lithium-oxygen batteries. ACS Nano 2017, 11, 1736-1746.
[64]
Wu, H. T.; Sun, W.; Shen, J. R.; Lu, C. Y.; Wang, Y. H.; Wang, Z. H.; Sun, K. N. Improved structural design of single- and double-wall MnCo2O4 nanotube cathodes for long-life Li-O2 batteries. Nanoscale 2018, 10, 13149-13158.
[65]
Adams, B. D.; Radtke, C.; Black, R.; Trudeau, M. L.; Zaghib, K.; Nazar, L. F. Current density dependence of peroxide formation in the Li-O2 battery and its effect on charge. Energy Environ. Sci. 2013, 6, 1772-1778.
[66]
Jung, J. W.; Cho, S. H.; Nam, J. S.; Kim, I. D. Current and future cathode materials for non-aqueous Li-air (O2) battery technology—A focused review. Energy Storage Mater. 2020, 24, 512-528.
[67]
Li, F. J.; Chen, J. Mechanistic evolution of aprotic lithium-oxygen batteries. Adv. Energy Mater. 2017, 7, 1602934.
[68]
Lim, H. D.; Lee, B.; Bae, Y.; Park, H.; Ko, Y.; Kim, H.; Kim, J.; Kang, K. Reaction chemistry in rechargeable Li-O2 batteries. Chem. Soc. Rev. 2017, 46, 2873-2888.
[69]
Yang, C. Z.; Wong, R. A.; Hong, M.; Yamanaka, K.; Ohta, T.; Byon, H. R. Unexpected Li2O2 film growth on carbon nanotube electrodes with CeO2 nanoparticles in Li-O2 batteries. Nano Lett. 2016, 16, 2969-2974.
[70]
Dutta, A.; Wong, R. A.; Park, W.; Yamanaka, K.; Ohta, T.; Jung, Y.; Byon, H. R. Nanostructuring one-dimensional and amorphous lithium peroxide for high round-trip efficiency in lithium-oxygen batteries. Nat. Commun. 2018, 9, 680.
Nano Research
Pages 2356-2364
Cite this article:
Dai L, Sun Q, Chen L, et al. Ag doped urchin-like α-MnO2 toward efficient and bifunctional electrocatalysts for Li-O2 batteries. Nano Research, 2020, 13(9): 2356-2364. https://doi.org/10.1007/s12274-020-2855-0
Topics:

751

Views

32

Crossref

N/A

Web of Science

31

Scopus

4

CSCD

Altmetrics

Received: 20 March 2020
Revised: 29 April 2020
Accepted: 06 May 2020
Published: 25 June 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return