AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Highly active N-doped carbon encapsulated Pd-Fe intermetallic nanoparticles for the oxygen reduction reaction

Yezhou Hu1Yun Lu1Xueru Zhao2Tao Shen1Tonghui Zhao1Mingxing Gong1Ke Chen1Chenglong Lai1Jian Zhang1Huolin L. Xin3Deli Wang1( )
Key laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Institute of New-Energy Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697, USA
Show Author Information

Graphical Abstract

Abstract

Developing highly efficient non-Pt catalysts for fuel cells and metal-air batteries is highly desirable but still challenging due to the sluggish oxygen reduction reaction (ORR). Herein, a facile and efficient strategy is demonstrated to prepare N-doped carbon encapsulated ordered Pd-Fe intermetallic (O-Pd-Fe@NC/C) nanoparticles via a one-step thermal annealing method. The obtained O-Pd-Fe@NC/C nanoparticles show enhanced ORR activity, durability and anti-poisoning capacity in both acid and alkaline medium. When O-Pd-Fe@NC/C serving as cathode catalyst for Zn-air battery, it exhibits higher voltage platform and superior cycling performance with respect to the Zn-air battery based on the mixture of Pt/C and Ir/C catalysts. The enhanced electrocatalytic performance can be ascribed to the formation of face-centered tetragonal (fct) Pd-Fe nanoparticles, the protective action of the N-doped carbon layer and the interface confinement effect between them. The in situ formed N-doped carbon shell not only restrains the Pd-Fe ordered intermetallics from aggregating effectively during the thermal annealing process, but also provides a strong anchoring effect to avoid the detachment of Pd-Fe nanoparticles from the carbon support during the potential cycling. This facile carbon encapsulation strategy may also be extended to the preparation of a wide variety of N-doped carbon encapsulated intermetallic compounds for fuel cell application.

Electronic Supplementary Material

Download File(s)
12274_2020_2856_MOESM1_ESM.pdf (3.6 MB)

References

[1]
Wang, D. L.; Xin, H. L.; Hovden, R.; Wang, H. S.; Yu, Y. C.; Muller, D. A.; DiSalvo, F. J.; Abruña, H. D. Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 2012, 12, 81-87.
[2]
Gu, Y.; Liu, Y. F.; Cao, X. T. Evolving strategies for tumor immunotherapy: Enhancing the enhancer and suppressing the suppressor. Nat. Sci. Rev. 2017, 4, 161-163.
[3]
Zhu, C. Z.; Dong, S. J. Recent progress in graphene-based nanomaterials as advanced electrocatalysts towards oxygen reduction reaction. Nanoscale 2013, 5, 1753-1767.
[4]
Wang, X.; Wang, J.; Wang, D. L.; Dou, S.; Ma, Z. L.; Wu, J. H.; Tao, L.; Shen, A. L.; Ouyang, C. B.; Liu, Q. H. et al. One-pot synthesis of nitrogen and sulfur co-doped graphene as efficient metal-free electrocatalysts for the oxygen reduction reaction. Chem. Commun. 2014, 50, 4839-4842.
[5]
Xiao, W. P.; Zhu, J.; Han, L. L.; Liu, S. F.; Wang, J.; Wu, Z. X.; Lei, W.; Xuan, C. J.; Xin, H. L.; Wang, D. L. Pt skin on Pd-Co-Zn/C ternary nanoparticles with enhanced Pt efficiency toward ORR. Nanoscale 2016, 8, 14793-14802.
[6]
Lv, H. F.; Peng, T.; Wu, P.; Pan, M.; Mu, S. C. Nano-boron carbide supported platinum catalysts with much enhanced methanol oxidation activity and CO tolerance. J. Mater. Chem. 2012, 22, 9155-9160.
[7]
He, D. P.; Tang, H. L.; Kou, Z. K.; Pan, M.; Sun, X. L.; Zhang, J. J.; Mu, S. C. Engineered graphene materials: Synthesis and applications for polymer electrolyte membrane fuel cells. Adv. Mater. 2017, 29, 1601741.
[8]
Yin, S B.; Cai, M.; Wang, C. X.; Shen, P. K. Tungsten carbide promoted Pd-Fe as alcohol-tolerant electrocatalysts for oxygen reduction reactions. Energy Environ. Sci. 2011, 4, 558-563.
[9]
Wang, G. W.; Guan, J. X.; Xiao, L.; Huang, B.; Wu, N.; Lu, J. T.; Zhuang, L. Pd skin on AuCu intermetallic nanoparticles: A highly active electrocatalyst for oxygen reduction reaction in alkaline media. Nano Energy 2016, 29, 268-274.
[10]
Zhang, L.; Lee, K.; Zhang, J. J. The effect of heat treatment on nanoparticle size and ORR activity for carbon-supported Pd-Co alloy electrocatalysts. Electrochim. Acta 2007, 52, 3088-3094.
[11]
Luo, L. X.; Zhu, F. J.; Tian, R. X.; Li, L.; Shen, S. Y.; Yan, X. H.; Zhang, J. L. Composition-graded PdxNi1-x nanospheres with Pt monolayer shells as high-performance electrocatalysts for oxygen reduction reaction. ACS Catal. 2017, 7, 5420-5430.
[12]
Lim, B.; Jiang, M. J.; Camargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X. M.; Zhu, Y. M.; Xia, Y. N. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 2009, 324, 1302-1305.
[13]
Gao, Q.; Ju, Y. M.; An, D.; Gao, M. R.; Cui, C. H.; Liu, J. W.; Cong, H. P.; Yu, S. H. Shape-controlled synthesis of monodisperse PdCu nanocubes and their electrocatalytic properties. ChemSusChem 2013, 6, 1878-1882.
[14]
Zhang, L.; Hou, F.; Tan, Y. W. Shape-tailoring of CuPd nanocrystals for enhancement of electro-catalytic activity in oxygen reduction reaction. Chem. Commun. 2012, 48, 7152-7154.
[15]
Liu, Z. Y.; Fu, G. T.; Li, J. H.; Liu, Z. Q.; Xu, L.; Sun, D. M.; Tang, Y. W. Facile synthesis based on novel carbon-supported cyanogel of structurally ordered Pd3Fe/C as electrocatalyst for formic acid oxidation. Nano Res. 2018, 11, 4686-4696.
[16]
Zhang, B. T.; Fu, G. T.; Li, Y. T.; Liang, L. C.; Grundish, N. S.; Tang, Y. W.; Goodenough, J. B.; Cui, Z. M. General strategy for synthesis of ordered Pt3M intermetallics with ultrasmall particle size. Angew. Chem., Int. Ed. 2020, 59, 7857-7863.
[17]
Xiao, W. P.; Cordeiro, M. A. L.; Gao, G. Y.; Zheng, A. M.; Wang, J.; Lei, W.; Gong, M. X.; Lin, R. Q.; Stavitski, E.; Xin, H. L. et al. Atomic rearrangement from disordered to ordered Pd-Fe nanocatalysts with trace amount of Pt decoration for efficient electrocatalysis. Nano Energy 2018, 50, 70-78.
[18]
Zou, L. L.; Fan, J.; Zhou, Y.; Wang, C. M.; Li, J.; Zou, Z. Q.; Yang, H. Conversion of PtNi alloy from disordered to ordered for enhanced activity and durability in methanol-tolerant oxygen reduction reactions. Nano Res. 2015, 8, 2777-2788.
[19]
Maiti, K.; Balamurugan, J.; Peera, S. G.; Kim, N. H.; Lee, J. H. Highly active and durable core-shell fct-PdFe@Pd nanoparticles encapsulated NG as an efficient catalyst for oxygen reduction reaction. ACS Appl. Mater Interfaces 2018, 10, 18734-18745.
[20]
Galeano, C.; Meier, J. C.; Peinecke, V.; Bongard, H.; Katsounaros, I.; Topalov, A. A.; Lu, A. H.; Mayrhofer, K. J. J.; Schüth, F. Toward highly stable electrocatalysts via nanoparticle pore confinement. J. Am. Chem. Soc. 2012, 134, 20457-20465.
[21]
Chen, H.; Wang, D.; Yu, Y. C.; Newton, K. A.; Muller, D. A.; Abruña, H.; DiSalvo, F. J. A surfactant-free strategy for synthesizing and processing intermetallic platinum-based nanoparticle catalysts. J. Am. Chem. Soc. 2012, 134, 18453-18459.
[22]
Cheng, N. C.; Banis, M. N.; Liu, J.; Riese, A.; Li, X.; Li, R. Y.; Ye, S. Y.; Knights, S.; Sun, X. L. Extremely stable platinum nanoparticles encapsulated in a zirconia nanocage by area-selective atomic layer deposition for the oxygen reduction reaction. Adv. Mater. 2015, 27, 277-281.
[23]
An, L.; Jiang, N.; Li, B.; Hua, S. X.; Fu, Y. T.; Liu, J. X.; Hao, W.; Xia, D. G.; Sun, Z. C. A highly active and durable iron/cobalt alloy catalyst encapsulated in N-doped graphitic carbon nanotubes for oxygen reduction reaction by a nanofibrous dicyandiamide template. J. Mater. Chem. A 2018, 6, 5962-5970.
[24]
Choi, C. H.; Lee, S. Y.; Park, S. H.; Woo, S. I. Highly active N-doped-CNTs grafted on Fe/C prepared by pyrolysis of dicyandiamide on Fe2O3/C for electrochemical oxygen reduction reaction. Appl. Catal. B Environ. 2011, 103, 362-368.
[25]
Li, Q.; Xu, D.; Guo, J. N.; Ou, X.; Yan, F. Protonated g-C3N4@polypyrrole derived N-doped porous carbon for supercapacitors and oxygen electrocatalysis. Carbon 2017, 124, 599-610.
[26]
Wang, Y.; Wang, L.; Tong, M. M.; Zhao, X. J.; Gao, Y. T.; Fu, H. G. Co-VN encapsulated in bamboo-like N-doped carbon nanotubes for ultrahigh-stability of oxygen reduction reaction. Nanoscale 2018, 10, 4311-4319.
[27]
Su, Y. H.; Jiang, H. L.; Zhu, Y. H.; Yang, X. L.; Shen, J. H.; Zou, W. J.; Chen, J. D.; Li, C. Z. Enriched graphitic N-doped carbon-supported Fe3O4 nanoparticles as efficient electrocatalysts for oxygen reduction reaction. J. Mater. Chem. A 2014, 2, 7281-7287.
[28]
Guo, L.; Jiang, W. J.; Zhang, Y.; Hu, J. S.; Wei, Z. D.; Wan, L. J. Embedding Pt nanocrystals in N-doped porous carbon/carbon nanotubes toward highly stable electrocatalysts for the oxygen reduction reaction. ACS Catal. 2015, 5, 2903-2909.
[29]
Arrigo, R.; Schuster, M. E.; Xie, Z. L.; Yi, Y. M.; Wowsnick, G.; Sun, L. L.; Hermann, K. E.; Friedrich, M.; Kast, P.; Hävecker, M. et al. Nature of the N-Pd interaction in nitrogen-doped carbon nanotube catalysts. ACS Catal. 2015, 5, 2740-2753.
[30]
Perazzolo, V.; Grądzka, E.; Durante, C.; Pilot, R.; Vicentini, N.; Rizzi, G. A.; Granozzi, G.; Gennaro, A. Chemical and electrochemical stability of nitrogen and sulphur doped mesoporous carbons. Electrochim. Acta 2016, 197, 251-262.
[31]
Hu, J.; Kuttiyiel, K. A.; Sasaki, K.; Su, D.; Yang, T. H.; Park, G. G.; Zhang, C. X.; Chen, G. Y.; Adzic, R. Pt monolayer shell on nitrided alloy core—a path to highly stable oxygen reduction catalyst. Catalysts 2015, 5, 1321-1332.
[32]
Xiong, Y.; Yang, Y.; DiSalvo, F. J.; Abruña, H. D. Pt-decorated composition-tunable Pd-Fe@Pd/C core-shell nanoparticles with enhanced electrocatalytic activity toward the oxygen reduction reaction. J. Am. Chem. Soc. 2018, 140, 7248-7255.
[33]
Liu, R. L.; Wu, D. Q.; Feng, X. L.; Müllen, K. Nitrogen-doped ordered mesoporous graphitic arrays with high electrocatalytic activity for oxygen reduction. Angew. Chem., Int. Ed. 2010, 49, 2565-2569.
[34]
He, C. Y.; Shen, P. K. Pt loaded on truncated hexagonal pyramid WC/graphene for oxygen reduction reaction. Nano Energy 2014, 8, 52-61.
[35]
Najam, T.; Shah, S. S. A.; Ding, W.; Jiang, J. X.; Jia, L.; Yao, W.; Li, L.; Wei, Z. D. An efficient anti-poisoning catalyst against SOx, NOx, and POx: P, N-doped carbon for oxygen reduction in acidic media. Angew. Chem., Int. Ed. 2018, 57, 15101-15106.
[36]
Wen, Z.; Liu, J.; Li, J. Core/shell Pt/C nanoparticles embedded in mesoporous carbon as a methanol-tolerant cathode catalyst in direct methanol fuel cells. Adv. Mater. 2008, 20, 743-747.
[37]
Choi, B.; Nam, W. H.; Chung, D. Y.; Park, I. S.; Yoo, S. J.; Song, J. C.; Sung, Y. E. Enhanced methanol tolerance of highly Pd rich Pd-Pt cathode electrocatalysts in direct methanol fuel cells. Electrochim. Acta 2015, 164, 235-242.
[38]
Wang, J.; Wu, Z. X.; Han, L. L.; Liu, Y. Y.; Guo, J. P.; Xin, H. L.; Wang, D. L. Rational design of three-dimensional nitrogen and phosphorus co-doped graphene nanoribbons/CNTs composite for the oxygen reduction. Chin. Chem. Lett. 2016, 27, 597-601.
[39]
Hu, L. B.; Yu, F.; Yuan, H. F.; Wang, G.; Liu, M. C.; Wang, L. N.; Xue, X. Y.; Peng, B. H.; Tian, Z. Q.; Dai, B. Improved oxygen reduction reaction via a partially oxidized Co-CoO catalyst on N-doped carbon synthesized by a facile sand-bath method. Chin. Chem. Lett. 2019, 30, 624-629.
Nano Research
Pages 2365-2370
Cite this article:
Hu Y, Lu Y, Zhao X, et al. Highly active N-doped carbon encapsulated Pd-Fe intermetallic nanoparticles for the oxygen reduction reaction. Nano Research, 2020, 13(9): 2365-2370. https://doi.org/10.1007/s12274-020-2856-z
Topics:

901

Views

49

Crossref

N/A

Web of Science

51

Scopus

6

CSCD

Altmetrics

Received: 09 April 2020
Revised: 05 May 2020
Accepted: 06 May 2020
Published: 16 June 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return