AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Versatile and scalable chemical vapor deposition of vertically aligned MoTe2 on reusable Mo foils

Jinjun Lin1Hong Wang1Roland Yingjie Tay2Hongling Li1Maziar Shakerzadeh1Siu Hon Tsang2Zheng Liu3( )Edwin Hang Tong Teo1,3( )
School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
Temasek Laboratories@NTU, 50 Nanyang Avenue, Singapore 639798, Singapore
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
Show Author Information

Graphical Abstract

Abstract

Layered MoTe2 has shown great promises for optoelectronics and energy-storage applications due to its exceptional optical and electrochemical properties. To date, considerable efforts have been devoted to fabricating layered MoTe2 with lateral orientation by means of mechanical/chemical exfoliation and chemical vapor deposition (CVD) methods. As compared to its horizontal counterparts, vertically aligned MoTe2 with higher density of active edge sites is expected to possess unique optoelectronic and electrochemical properties, while which has not been reported yet. In this work, we report a versatile and scalable CVD growth of vertically aligned MoTe2 with length of up to ~ 7.5 µm on Mo foil. Remarkably, the dominant phase of the vertically aligned MoTe2 can be tuned from 2H to 1T’ by increasing the growth temperature from 630 to 780 °C. Owing to the weak interaction between the as-grown MoTe2 and Mo foil, the as-grown MoTe2 can be easily detached from the Mo foil. This in turn enabled economic reuse of the Mo foil for multiple growth. Moreover, the vertical growth of the MoTe2 is proposed to be caused by the internal strain generated during tellurization of Mo foil. Furthermore, the as-grown MoTe2 can also be directly dispersed in solvent to produce high-quality MoTe2 nanosheets. The versatility of this growth strategy was further demonstrated by fabricating other vertically aligned transition metal chalcogenides (TMDs) such as TaTe2 and MoSe2. Hence, this work paves the path towards achieving unique TMDs structures to enable high-performance optoelectronic and electrochemical devices.

Electronic Supplementary Material

Download File(s)
12274_2020_2857_MOESM1_ESM.pdf (2.9 MB)

References

[1]
Bie, Y. Q.; Grosso, G.; Heuck, M.; Furchi, M. M.; Cao, Y.; Zheng, J. B.; Bunandar, D.; Navarro-Moratalla, E.; Zhou, L.; Efetov, D. K. et al. A MoTe2-based light-emitting diode and photodetector for silicon photonic integrated circuits. Nat. Nanotechnol. 2017, 12, 1124-1129.
[2]
Zhang, Q. Y.; Yang, S. A.; Mi, W. B.; Cheng, Y.; Schwingenschlogl, U. Large spin-valley polarization in monolayer MoTe2 on top of EuO(111). Adv. Mater. 2016, 28, 959-966.
[3]
Ruppert, C.; Aslan, O. B.; Heinz, T. F. Optical properties and band gap of single- and few-layer MoTe2 crystals. Nano Lett. 2014, 14, 6231-6236.
[4]
Keum, D. H.; Cho, S.; Kim, J. H.; Choe, D. H.; Sung, H. J.; Kan, M.; Kang, H.; Hwang, J. Y.; Kim, S. W.; Yang, H. et al. Bandgap opening in few-layered monoclinic MoTe2. Nat. Phys. 2015, 11, 482-486.
[5]
Zhang, F.; Zhang, H. R.; Krylyuk, S.; Milligan, C. A.; Zhu, Y. Q.; Zemlyanov, D. Y.; Bendersky, L. A.; Burton, B. P.; Davydov, A. V.; Appenzeller, J. Electric-field induced structural transition in vertical MoTe2- and Mo1-xWxTe2-based resistive memories. Nat. Mater. 2019, 18, 55-61.
[6]
Cho, S.; Kim, S.; Kim, J. H.; Zhao, J.; Seok, J.; Keum, D. H.; Baik, J.; Choe, D. H.; Chang, K. J.; Suenaga, K. et al. Phase patterning for ohmic homojunction contact in MoTe2. Science 2015, 349, 625-628.
[7]
Sung, J. H.; Heo, H.; Si, S.; Kim, Y. H.; Noh, H. R.; Song, K.; Kim, J.; Lee, C. S.; Seo, S. Y.; Kim, D. H. et al. Coplanar semiconductor-metal circuitry defined on few-layer MoTe2 via polymorphic heteroepitaxy. Nat. Nanotechnol. 2017, 12, 1064-1070.
[8]
Pradhan, N. R.; Rhodes, D.; Feng, S. M.; Xin, Y.; Memaran, S.; Moon, B. H.; Terrones, H.; Terrones, M.; Balicas, L. Field-effect transistors based on few-layered alpha-MoTe2. ACS Nano 2014, 8, 5911-5920.
[9]
Kong, D. S.; Wang, H. T.; Cha, J. J.; Pasta, M.; Koski, K. J.; Yao, J.; Cui, Y. Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano. Lett. 2013, 13, 1341-1347.
[10]
Jung, Y.; Shen, J.; Liu, Y. H.; Woods, J. M.; Sun, Y.; Cha, J. J. Metal seed layer thickness-induced transition from vertical to horizontal growth of MoS2 and WS2. Nano Lett. 2014, 14, 6842-6849.
[11]
Zeng, L. H.; Lin, S. H.; Li, Z. J.; Zhang, Z. X.; Zhang, T. F.; Xie, C.; Mak, C. H.; Chai, Y.; Lau, S. P.; Luo, L. B. et al. Fast, self-driven, air-stable, and broadband photodetector based on vertically aligned PtSe2/GaAs heterojunction. Adv. Funct. Mater. 2018, 28, 1705970.
[12]
Han, S. S.; Kim, J. H.; Noh, C.; Kim, J. H.; Ji, E.; Kwon, J.; Yu, S. M.; Ko, T. J.; Okogbue, E.; Oh, K. H. et al. Horizontal-to-vertical transition of 2D layer orientation in low-temperature chemical vapor deposition-grown PtSe2 and its influences on electrical properties and device applications. ACS Appl. Mater. Interfaces 2019, 11, 13598-13607.
[13]
Cho, S. Y.; Kim, S. J.; Lee, Y.; Kim, J. S.; Jung, W. B.; Yoo, H. W.; Kim, J.; Jung, H. T. Highly enhanced gas adsorption properties in vertically aligned MoS2 layers. ACS Nano 2015, 9, 9314-9321.
[14]
Jung, Y.; Shen, J.; Sun, Y.; Cha, J. J. Chemically synthesized heterostructures of two-dimensional molybdenum/tungsten-based dichalcogenides with vertically aligned layers. ACS Nano 2014, 8, 9550-9557.
[15]
Yu, J. H.; Lee, H. R.; Hong, S. S.; Kong, D. S.; Lee, H. W.; Wang, H. T.; Xiong, F.; Wang, S.; Cui, Y. Vertical heterostructure of two-dimensional MoS2 and WSe2 with vertically aligned layers. Nano Lett. 2015, 15, 1031-1035.
[16]
Zhuang, P. Y.; Sun, Y. Y.; Dong, P.; Smith, W.; Sun, Z. Z.; Ge, Y. C.; Pei, Y.; Cao, Z. Y.; Ajayan, P. M.; Shen, J. F. et al. Revisiting the role of active sites for hydrogen evolution reaction through precise defect adjusting. Adv. Funct. Mater. 2019, 29, 1901290.
[17]
Su, J. W.; Liu, K. L.; Wang, F. K.; Jin, B.; Guo, Y. B.; Liu, G. H.; Li, H. Q.; Zhai, T. Y. Van der Waals 2D transition metal tellurides. Adv. Mater. Interfaces 2019, 6, 1900741.
[18]
Yamamoto, M.; Wang, S. T.; Ni, M. Y.; Lin, Y. F.; Li, S. L.; Aikawa, S.; Jian, W. B.; Ueno, K.; Wakabayashi, K.; Tsukagoshi, K. Strong enhancement of Raman scattering from a bulk-inactive vibrational mode in few-layer MoTe2. ACS Nano 2014, 8, 3895-3903.
[19]
Wang, B.; Yang, S. X.; Wang, C.; Wu, M. H.; Huang, L.; Liu, Q.; Jiang, C. B. Enhanced current rectification and self-powered photoresponse in multilayer p-MoTe2/n-MoS2 van der Waals heterojunctions. Nanoscale 2017, 9, 10733-10740.
[20]
Gholamvand, Z.; McAteer, D.; Backes, C.; McEvoy, N.; Harvey, A.; Berner, N. C.; Hanlon, D.; Bradley, C.; Godwin, I.; Rovetta, A. et al. Comparison of liquid exfoliated transition metal dichalcogenides reveals MoSe2 to be the most effective hydrogen evolution catalyst. Nanoscale 2016, 8, 5737-5749.
[21]
Cunningham, G.; Lotya, M.; Cucinotta, C. S.; Sanvito, S.; Bergin, S. D.; Menzel, R.; Shaffer, M. S. P.; Coleman, J. N. Solvent exfoliation of transition metal dichalcogenides: Dispersibility of exfoliated nanosheets varies only weakly between compounds. ACS Nano 2012, 6, 3468-3480.
[22]
Zhou, L.; Zubair, A.; Wang, Z. Q.; Zhang, X.; Ouyang, F. P.; Xu, K.; Fang, W. J.; Ueno, K.; Li, J.; Palacios, T. et al. Synthesis of high-quality large-area homogenous 1T′ MoTe2 from chemical vapor deposition. Adv. Mater. 2016, 28, 9526-9531.
[23]
Park, J. C.; Yun, S. J.; Kim, H.; Park, J. H.; Chae, S. H.; An, S. J.; Kim, J. G.; Kim, S. M.; Kim, K. K.; Lee, Y. H. Phase-engineered synthesis of centimeter-scale 1T′- and 2H-molybdenum ditelluride thin films. ACS Nano 2015, 9, 6548-6554.
[24]
Yang, L.; Zhang, W. F.; Li, J.; Cheng, S.; Xie, Z. J.; Chang, H. X. Tellurization velocity-dependent metallic-semiconducting-metallic phase evolution in chemical vapor deposition growth of large-area, few-layer MoTe2. ACS Nano 2017, 11, 1964-1972.
[25]
Zhang, Q. Q.; Xiao, Y.; Zhang, T.; Weng, Z.; Zeng, M. Q.; Yue, S. L.; Mendes, R. G.; Wang, L. X.; Chen, S. L.; Rümmeli, M. H. et al. Iodine-mediated chemical vapor deposition growth of metastable transition metal dichalcogenides. Chem. Mater. 2017, 29, 4641-4644.
[26]
Song, Q. J.; Tan, Q. H.; Zhang, X.; Wu, J. B.; Sheng, B. W.; Wan, Y.; Wang, X. Q.; Dai, L.; Tan, P. H. Physical origin of davydov splitting and resonant Raman spectroscopy of davydov components in multilayer MoTe2. Phys. Rev. B 2016, 93, 115409.
[27]
Sun, Y. F.; Wang, Y. X.; Sun, D.; Carvalho, B. R.; Read, C. G.; Lee, C. H.; Lin, Z.; Fujisawa, K.; Robinson, J. A.; Crespi, V. H. et al. Low-temperature solution synthesis of few-layer 1T′-MoTe2 nanostructures exhibiting lattice compression. Angew. Chem., Int. Ed. 2016, 55, 2830-2834.
[28]
Xie, S.; Chen, L.; Zhang, T. B.; Nie, X. R.; Zhu, H.; Ding, S. J.; Sun, Q. Q.; Zhang, D. W. Fast solid-phase synthesis of large-area few-layer 1T’-MoTe2 films. J. Cryst. Growth 2017, 467, 29-33.
[29]
Bernède, J. C.; Amory, C.; Assmann, L.; Spiesser, M. X-ray Photoelectron spectroscopy study of MoTe2 single crystals and thin films. Appl. Surf. Sci. 2003, 219, 238-248.
[30]
Sirota, B.; Glavin, N.; Krylyuk, S.; Davydov, A. V.; Voevodin, A. A. Hexagonal MoTe2 with amorphous BN passivation layer for improved oxidation resistance and endurance of 2D field effect transistors. Sci. Rep. 2018, 8, 8668.
[31]
Zhou, L.; Xu, K.; Zubair, A.; Zhang, X.; Ouyang, F. P.; Palacios, T.; Dresselhaus, M. S.; Li, Y. F.; Kong, J. Role of molecular sieves in the CVD synthesis of large-area 2D MoTe2. Adv. Funct. Mater. 2017, 27, 1603491.
[32]
Mirabelli, G.; McGeough, C.; Schmidt, M.; McCarthy, E. K.; Monaghan, S.; Povey, I. M.; McCarthy, M.; Gity, F.; Nagle, R.; Hughes, G. et al. Air sensitivity of MoS2, MoSe2, MoTe2, HfS2, and HfSe2. J. Appl. Phys. 2016, 120, 125102.
[33]
Naylor, C. H.; Parkin, W. M.; Gao, Z. L.; Berry, J.; Zhou, S. S.; Zhang, Q. C.; McClimon, J. B.; Tan, L. Z.; Kehayias, C. E.; Zhao, M. Q. et al. Synthesis and physical properties of phase-engineered transition metal dichalcogenide monolayer heterostructures. ACS Nano 2017, 11, 8619-8627.
[34]
Zhang, X.; Jin, Z. H.; Wang, L. Q.; Hachtel, J. A.; Villarreal, E.; Wang, Z. X.; Ha, T.; Nakanishi, Y.; Tiwary, C. S.; Lai, J. W. et al. Low contact barrier in 2H/1T′ MoTe2 in-plane heterostructure synthesized by chemical vapor deposition. ACS Appl. Mater. Interfaces 2019, 11, 12777-12785.
[35]
Zhou, L.; Xu, K.; Zubair, A.; Liao, A. D.; Fang, W. J.; Ouyang, F. P.; Lee, Y. H.; Ueno, K.; Saito, R.; Palacios, T. et al. Large-area synthesis of high-quality uniform few-layer MoTe2. J. Am. Chem. Soc. 2015, 137, 11892-11895.
[36]
Yan, X. J.; Lv, Y. Y.; Li, L.; Li, X.; Yao, S. H.; Chen, Y. B.; Liu, X. P.; Lu, H.; Lu, M. H.; Chen, Y. F. Investigation on the phase-transition-induced hysteresis in the thermal transport along the c-axis of MoTe2. npj Quantum Mater. 2017, 2, 31.
[37]
Dixit, V.; Vyas, C.; Patel, A.; Pathak, V. M.; Solanki, G. K.; Patel, K. D. Growth, morphological properties and pulsed photo response of MoTe2 single crystal synthesized by DVT technique. AIP Conf. Proc. 2018, 1961, 030017.
[38]
Kwak, J.; Jo, Y.; Song, S.; Kim, J. H.; Kim, S. Y.; Lee, J. U.; Lee, S.; Park, J.; Kim, K.; Lee, G. D. et al. Single-crystalline nanobelts composed of transition metal ditellurides. Adv. Mater. 2018, 30, 1707260.
[39]
McGlynn, J. C.; Cascallana-Matías, I.; Fraser, J. P.; Roger, I.; McAllister, J.; Miras, H. N.; Symes, M. D.; Ganin, A. Y. Molybdenum ditelluride rendered into an efficient and stable electrocatalyst for the hydrogen evolution reaction by polymorphic control. Energy Technol. 2018, 6, 345-350.
[40]
Liu, M.; Wang, Z. J.; Liu, J. X.; Wei, G. J.; Du, J.; Li, Y. P.; An, C. H.; Zhang, J. Synthesis of few-layer 1T′-MoTe2 ultrathin nanosheets for high-performance pseudocapacitors. J. Mater. Chem. A 2017, 5, 1035-1042.
[41]
Yoo, Y.; DeGregorio, Z. P.; Su, Y.; Koester, S. J.; Johns, J. E. In-plane 2H-1T′ MoTe2 homojunctions synthesized by flux-controlled phase engineering. Adv. Mater. 2017, 29, 1605461.
[42]
Chen, S. Y.; Goldstein, T.; Venkataraman, D.; Ramasubramaniam, A.; Yan, J. Activation of new Raman modes by inversion symmetry breaking in type II weyl semimetal candidate T′-MoTe2. Nano Lett. 2016, 16, 5852-5860.
[43]
Yu, Q. H.; Wang, Y. Y.; Xu, S.; Sun, L. L.; Xia, T. L. Low-temperature properties of β-MoTe2 grown by the chemical vapor transport method. EPL 2016, 115, 37007.
[44]
Empante, T. A.; Zhou, Y.; Klee, V.; Nguyen, A. E.; Lu, I. H.; Valentin, M. D.; Naghibi Alvillar, S. A.; Preciado, E.; Berges, A. J.; Merida, C. S. et al. Chemical vapor deposition growth of few-layer MoTe2 in the 2H, 1T′, and 1T phases: Tunable properties of MoTe2 films. ACS Nano 2017, 11, 900-905.
[45]
Xu, X. L.; Chen, S. L.; Liu, S.; Cheng, X.; Xu, W. J.; Li, P.; Wan, Y.; Yang, S. Q.; Gong, W. T.; Yuan, K. et al. Millimeter-scale single-crystalline semiconducting MoTe2 via solid-to-solid phase transformation. J. Am. Chem. Soc. 2019, 141, 2128-2134.
[46]
Choudhary, N.; Chung, H. S.; Kim, J. H.; Noh, C.; Islam, A.; Oh, K. H.; Coffey, K.; Jung, Y.; Jung, Y. Strain-driven and layer-number-dependent crossover of growth mode in van der Waals heterostructures: 2D/2D layer-by-layer horizontal epitaxy to 2D/3D vertical reorientation. Adv. Mater. Interfaces 2018, 5, 1800382.
[47]
Luxa, J.; Vosecký, P.; Mazánek, V.; Sedmidubský, D.; Pumera, M.; Lazar, P.; Sofer, Z. Layered transition-metal ditellurides in electrocatalytic applications-contrasting properties. ACS Catal. 2017, 7, 5706-5716.
[48]
Ma, N.; Zhang, M. K.; Wang, X. S.; Zhang, L.; Feng, J.; Zhang, X. Z. NIR light-triggered degradable MoTe2 nanosheets for combined photothermal and chemotherapy of cancer. Adv. Funct. Mater. 2018, 28, 1801139.
[49]
Panda, M. R.; Raj K, A.; Ghosh, A.; Kumar, A.; Muthuraj, D.; Sau, S.; Yu, W. Z.; Zhang, Y. P.; Sinha, A. K.; Weyland, M. et al. Blocks of molybdenum ditelluride: A high rate anode for sodium-ion battery and full cell prototype study. Nano Energy 2019, 64, 103951.
[50]
Ding, Y.; Wang, Z. L. Structure analysis of nanowires and nanobelts by transmission electron microscopy. J. Phys. Chem. B 2004, 108, 12280-12291.
[51]
Chen, S. Y.; Naylor, C. H.; Goldstein, T.; Johnson, A. T. C.; Yan, J. Intrinsic phonon bands in high-quality monolayer T' molybdenum ditelluride. ACS Nano 2017, 11, 814-820.
[52]
Shaw, J. C.; Zhou, H. L.; Chen, Y.; Weiss, N. O.; Liu, Y.; Huang, Y.; Duan, X. F. Chemical vapor deposition growth of monolayer MoSe2 nanosheets. Nano Res. 2014, 7, 511-517.
[53]
Mahjouri-Samani, M.; Lin, M. W.; Wang, K.; Lupini, A. R.; Lee, J.; Basile, L.; Boulesbaa, A.; Rouleau, C. M.; Puretzky, A. A.; Ivanov, I. N. et al. Patterned arrays of lateral heterojunctions within monolayer two-dimensional semiconductors. Nat. Commun. 2015, 6, 7749.
[54]
Gao, J. J.; Si, J. G.; Luo, X.; Yan, J.; Chen, F. C.; Lin, G. T.; Hu, L.; Zhang, R. R.; Tong, P.; Song, W. H. et al. Origin of the structural phase transition in single-crystal TaTe2. Phys. Rev. B 2018, 98, 224104.
[55]
Li, J.; Zhao, B.; Chen, P.; Wu, R. X.; Li, B.; Xia, Q. L.; Guo, G. H.; Luo, J.; Zang, K. T.; Zhang, Z. W. et al. Synthesis of ultrathin metallic MTe2 (M = V, Nb, Ta) single-crystalline nanoplates. Adv. Mater. 2018, 30, 1801043.
Nano Research
Pages 2371-2377
Cite this article:
Lin J, Wang H, Tay RY, et al. Versatile and scalable chemical vapor deposition of vertically aligned MoTe2 on reusable Mo foils. Nano Research, 2020, 13(9): 2371-2377. https://doi.org/10.1007/s12274-020-2857-y
Topics:

789

Views

5

Crossref

N/A

Web of Science

5

Scopus

1

CSCD

Altmetrics

Received: 18 December 2019
Revised: 04 May 2020
Accepted: 08 May 2020
Published: 25 June 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return