AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

The potentially crucial role of quasi-particle interferences for the growth of silicene on graphite

Fatme Jardali1Christoph Lechner1Maurizio De Crescenzi2Manuela Scarselli2Isabelle Berbezier3Paola Castrucci2Holger Vach1( )
LPICM, CNRS, Ecole Polytechnique, IP Paris, Palaiseau 91128, France
Dipartimento di Fisica, Università di Roma "Tor Vergata", Roma 00133, Italy
CNRS, Aix-Marseille Université, IM2NP, Marseille 13397, France
Show Author Information

Graphical Abstract

Abstract

A comprehensive picture of the initial stages of silicene growth on graphite is drawn. Evidence is shown that quasiparticle interferences play a crucial role in the formation of the observed silicene configurations. We propose, on one hand, that the charge modulations caused by those quantum interferences serve as templates and guide the incoming Si atoms to self-assemble to the unique ( 3×3)R30° honeycomb atomic arrangement. On the other hand, their limited extension limits the growth to about 150 Si atoms under our present deposition conditions. The here proposed electrostatic interaction finally explains the unexpected stability of the observed silicene islands over time and with temperature. Despite the robust guiding nature of those quantum interferences during the early growth phase, we demonstrate that the window of experimental conditions for silicene growth is quite narrow, making it an extremely challenging experimental task. Finally, it is shown that the experimentally observed three-dimensional silicon clusters might very well be the simple result of the end of the silicene growth resulting from the limited extent of the quasi-particle interferences.

References

[1]
Mannix, A. J.; Kiraly, B.; Hersam, M. C.; Guisinger, N. P. Synthesis and chemistry of elemental 2D materials. Nat. Rev. Chem. 2017, 1, 0014.
[2]
De Crescenzi, M.; Berbezier, I.; Scarselli, M.; Castrucci, P.; Abbarchi, M.; Ronda, A.; Jardali, F.; Park, J.; Vach, H. Formation of silicene nanosheets on graphite. ACS Nano 2016, 10, 11163-11171.
[3]
Peng, W. B.; Xu, T.; Diener, P.; Biadala, L.; Berthe, M.; Pi, X. D.; Borensztein, Y.; Curcella, A.; Bernard, R.; Prévot, G. et al. Resolving the controversial existence of silicene and germanene nanosheets grown on graphite. ACS Nano 2018, 12, 4754-4760.
[4]
Ronci, F.; Colonna, S.; Flammini, R.; De Crescenzi, M.; Scarselli, M.; Salvato, M.; Berbezier, I.; Jardali, F.; Lechner, C.; Pochet, P. et al. High graphene permeability for room temperature silicon deposition: The role of defects. Carbon 2020, 158, 631-641.
[5]
Park, C.; Yang, H.; Mayne, A. J.; Dujardin, G.; Seo, S.; Kuk, Y.; Ihm, J.; Kim, G. Formation of unconventional standing waves at graphene edges by valley mixing and pseudospin rotation. Proc. Natl. Acad. Sci. USA 2011, 108, 18622-18625.
[6]
Castrucci, P.; Fabbri, F.; Delise, T.; Scarselli, M.; Salvato, M.; Pascale, S.; Francini, F.; Berbezier, I.; Lechner, C.; Jardali, F. et al. Raman investigation of air-stable silicene nanosheets on an inert graphite surface. Nano Res. 2018, 11, 5879-5889.
[7]
Yue, N. L.; Myers, J.; Su, L. Q.; Wang, W. T.; Liu, F. D.; Tsu, R.; Zhuang, Y.; Zhang, Y. Growth of oxidation-resistive silicene-like thin flakes and Si nanostructures on graphene. J. Semicond. 2019, 40, 062001.
[8]
Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50.
[9]
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.
[10]
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
[11]
Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787-1799.
[12]
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953-17979.
[13]
Windiks, R.; Delley, B. Massive thermostatting in isothermal density functional molecular dynamics simulations. J. Chem. Phys. 2003, 119, 2481-2487.
[14]
Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511-519.
[15]
Cai, Y. M.; Chuu, C. P.; Wei, C. M.; Chou, M. Y. Stability and electronic properties of two-dimensional silicene and germanene on graphene. Phys. Rev. B 2013, 88, 245408.
[16]
Prévot, G.; Bernard, R.; Cruguel, H.; Curcella, A.; Lazzeri, M.; Leoni, T.; Masson, L.; Ranguis, A.; Borensztein, Y. Formation of silicene on silver: Strong interaction between Ag and Si. Phys. Status Solidi B 2016, 253, 206-217.
[17]
Díaz Álvarez, A.; Zhu, T.; Nys, J. P.; Berthe, M.; Empis, M.; Schreiber, J.; Grandidier, B.; Xu, T. Scanning tunneling spectroscopy and Raman spectroscopy of monolayer silicene on Ag(111). Surf. Sci. 2016, 653, 92-96.
[18]
Crommie, M. F.; Lutz, C. P.; Eigler D. M. Imaging standing waves in a two-dimensional electron gas. Nature 1993, 363, 524-527.
[19]
Hasegawa, Y.; Avouris. Direct observation of standing wave formation at surface steps using scanning tunneling spectroscopy. Phys. Rev. Lett. 1993, 71, 1071-1074.
[20]
Petersen, L.; Sprunger, P. T.; Hofmann; Lægsgaard, E.; Briner, B. G.; Doering, M.; Rust, H. P.; Bradshaw, A. M.; Besenbacher, F.; Plummer, E. W. Direct imaging of the two-dimensional Fermi contour: Fourier-transform STM. Phys. Rev. B 1998, 57, R6858-R6861.
[21]
Reifenberger, R. Lessons from Nanoscience: A lecture notes series: Volume 4, fundamentals of atomic force microscopy, Part I: Foundations, 2015; pp 49. https://doi.org/10.1142/9343.
[22]
Yang, H.; Mayne, A. J.; Boucherit, M.; Comtet, G.; Dujardin, G.; Kuk, Y. Quantum interference channeling at graphene edges. Nano Lett. 2010, 10, 943-947.
[23]
Rutter, G. M.; Crain, J. N.; Guisinger, N. P.; Li, T.; First, P. N.; Stroscio, J. A. Scattering and interference in epitaxial graphene. Science 2007, 317, 219-222.
[24]
Iannuzzi, M.; Kalichava, I.; Ma, H. F.; Leake, S. J.; Zhou, H. T.; Li, G.; Zhang, Y.; Bunk, O.; Gao, H. J.; Hutter, J. et al. Moiré beatings in graphene on Ru(0001). Phys. Rev. B 2013, 88, 125433.
[25]
Gupta, V.; Kumar, A.; Ray, N. Permeability of two-dimensional graphene and hexagonal-boron nitride to hydrogen atom. AIP Conf. Proc. 2018, 1953, 140013.
[26]
Tchalala, M. R.; Enriquez, H.; Bendounan, A.; Mayne, A. J.; Dujardin, G.; Kara, A.; Ali, M. A.; Oughaddou, H. Tip-induced oxidation of silicene nano-ribbons. Nanoscale Adv. 2020, .
Nano Research
Pages 2378-2383
Cite this article:
Jardali F, Lechner C, De Crescenzi M, et al. The potentially crucial role of quasi-particle interferences for the growth of silicene on graphite. Nano Research, 2020, 13(9): 2378-2383. https://doi.org/10.1007/s12274-020-2858-x
Topics:

749

Views

7

Crossref

N/A

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 18 December 2019
Revised: 30 April 2020
Accepted: 08 May 2020
Published: 25 June 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return