AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Fast growth of large single-crystalline WS2 monolayers via chemical vapor deposition

Shengxue Zhou1,2Lina Liu1Shuang Cui3Xiaofan Ping1Dake Hu1Liying Jiao1( )
Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
Department of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan 756000, China
Sinopec Beijing Research Institute of Chemical Industry, Beijing 100013, China
Show Author Information

Graphical Abstract

Abstract

Two-dimensional (2D) tungsten disulfide (WS2) has emerged as a promising ultrathin semiconductor for building high-performance nanoelectronic devices. The controllable synthesis of WS2 monolayers (1L) with both large size and high quality remains as a challenge. Here, we developed a new approach for the chemical vapor deposition (CVD) growth of WS2 monolayers by using K2WS4 as the growth precursor. The simple chemistry involved in our approach allowed for improved controllability and a fast growth rate of ~ 30 μm·min-1. We achieved the reliable growth of 1L WS2 flakes with side lengths of up to ~ 500 μm and the obtained WS2 flakes were 2D single crystals with low density of defects over a large area as evidenced by various spectroscopic and microscopic characterizations. In addition, the large 1L WS2 single crystals we obtained showed higher electrical performance than their counterparts grown with previous approaches, demonstrating the potential of our approach in producing high quality and large 2D semiconductors for future nanoelectronics.

Electronic Supplementary Material

Download File(s)
12274_2020_2859_MOESM1_ESM.pdf (1.8 MB)

References

[1]
Z. L. Ye,; T. Cao,; K. O’Brien,; H. Y. Zhu,; X. B. Yin,; Y. Wang,; S. G. Louie,; X. Zhang, Probing excitonic dark states in single-layer tungsten disulphide. Nature 2014, 513, 214-218.
[2]
K. F. Mak,; J. Shan, Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 2016, 10, 216-226.
[3]
Y. L. Wang,; C. X. Cong,; W. H. Yang,; J. Z. Shang,; N. Peimyoo,; Y. Chen,; J. Y. Kang,; J. P. Wang,; W. Huang,; T. Yu, Strain-induced direct-indirect bandgap transition and phonon modulation in monolayer WS2. Nano Res. 2015, 8, 2562-2572.
[4]
Y. Cui,; R. Xin,; Z. H. Yu,; Y. M. Pan,; Z. Y. Ong,; X. X. Wei,; J. Z. Wang,; H. Y. Nan,; Z. H. Ni,; Y. Wu, et al. High-performance monolayer WS2 field-effect transistors on high-κ dielectrics. Adv. Mater. 2015, 27, 5230-5234.
[5]
F. Zhang,; Y. F. Lu,; D. S. Schulman,; T. Y. Zhang,; K. Fujisawa,; Z. Lin,; Y. Lei,; A. L. Elias,; S. Das,; S. B. Sinnott, et al. Carbon doping of WS2 monolayers: Bandgap reduction and p-type doping transport. Sci. Adv. 2019, 5, eaav5003.
[6]
J. D. Mehew,; S. Unal,; E. T. Alonso,; G. F. Jones,; S. F. Ramadhan,; M. F. Craciun,; S. Russo, Fast and highly sensitive ionic-polymer- gated WS2-graphene photodetectors. Adv. Mater. 2017, 29, 1700222 .
[7]
C. H. Yeh,; H. C. Chen,; H. C. Lin,; Y. C. Lin,; Z. Y. Liang,; M. Y. Chou,; K. Suenaga,; P. W. Chiu, Ultrafast monolayer In/Gr-WS2-Gr hybrid photodetectors with high gain. ACS Nano 2019, 13, 3269-3279.
[8]
B. H. Kim,; H. H. Gu,; Y. J. Yoon, Large-area and low-temperature synthesis of few-layered WS2 films for photodetectors. 2D Mater. 2018, 5, 045030.
[9]
C. L. Choi,; J. Feng,; Y. G. Li,; J. Wu,; A. Zak,; R. Tenne,; H. J. Dai, WS2 nanoflakes from nanotubes for electrocatalysis. Nano Res. 2013, 6, 921-928.
[10]
Y. S. Zhang,; J. P. Shi,; G. F. Han,; M. J. Li,; Q. Q. Ji,; D. L. Ma,; Y. Zhang,; C. Li,; X. Y. Lang,; Y. F. Zhang, et al. Chemical vapor deposition of monolayer WS2 nanosheets on Au foils toward direct application in hydrogen evolution. Nano Res. 2015, 8, 2881-2890.
[11]
Y. Zhang,; Y. Y. Yao,; M. G. Sendeku,; L. Yin,; X. Y. Zhan,; F. Wang,; Z. X. Wang,; J. He, Recent progress in CVD growth of 2D transition metal dichalcogenides and related heterostructures. Adv. Mater. 2019, 31, 1901694.
[12]
A. Thangaraja,; S. M. Shinde,; G. Kalita,; M. Tanemura, Effect of WO3 precursor and sulfurization process on WS2 crystals growth by atmospheric pressure CVD. Mater. Lett. 2015, 156, 156-160.
[13]
D. H. Cho,; W. J. Lee,; J. H. Wi,; W. S. Han,; S. J. Yun,; B. Shin,; Y. D. Chung, Enhanced sulfurization reaction of molybdenum using a thermal cracker for forming two-dimensional MoS2 layers. Phys. Chem. Chem. Phys. 2018, 20, 16193-16201.
[14]
C. Kastl,; R. J. Koch,; C. T. Chen,; J. Eichhorn,; S. Ulstrup,; A. Bostwick,; C. Jozwiak,; T. R. Kuykendall,; N. J. Borys,; F. M. Toma, et al. Effects of defects on band structure and excitons in WS2 revealed by nanoscale photoemission spectroscopy. ACS Nano 2019, 13, 1284-1291.
[15]
Y. C. Lin,; S. S. Li,; H. P. Komsa,; L. J. Chang,; A. V. Krasheninnikov,; G. K. Eda,; K. Suenaga, Revealing the atomic defects of WS2 governing its distinct optical emissions. Adv. Funct. Mater. 2018, 28, 1704210.
[16]
H. Qiu,; T. Xu,; Z. L. Wang,; W. Ren,; H. Y. Nan,; Z. H. Ni,; Q. Chen,; S. J. Yuan,; F. Miao,; F. Q. Song, et al. Hopping transport through defect-induced localized states in molybdenum disulphide. Nat. Commun. 2013, 4, 2642.
[17]
B. Schuler,; J. H. Lee,; C. Kastl,; K. A. Cochrane,; C. T. Chen,; S. Refaely-Abramson,; S. J. Yuan,; E. van Veen,; R. Roldán,; N. J. Borys, et al. How substitutional point defects in two-dimensional WS2 induce charge localization, spin-orbit splitting, and strain. ACS Nano 2019, 13, 10520-10534.
[18]
C. Y. Lan,; X. L. Kang,; R. J. Wei,; Y. Meng,; S. P. Yip,; H. Zhang,; J. C. Ho, Utilizing a NaOH promoter to achieve large single-domain monolayer WS2 films via modified chemical vapor deposition. ACS Appl. Mater. Interfaces 2019, 11, 35238-35246.
[19]
Y. Gao,; Z. B. Liu,; D. M. Sun,; L. Huang,; L. P. Ma,; L. C. Yin,; T. Ma,; Z. Y. Zhang,; X. L. Ma,; L. M. Peng, et al. Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils. Nat. Commun. 2015, 6, 8569.
[20]
P. V. Sarma,; P. D. Patil,; P. K. Barman,; R. N. Kini,; M. M. Shaijumon, Controllable growth of few-layer spiral WS2. RSC Adv. 2016, 6, 376-382.
[21]
K. Chen,; X. Wan,; W. G. Xie,; J. X. Wen,; Z. W. Kang,; X. L. Zeng,; H. J. Chen,; J. B. Xu, Lateral built-in potential of monolayer MoS2-WS2 in-plane heterostructures by a shortcut growth strategy. Adv. Mater. 2015, 27, 6431-6437.
[22]
W. S. Xu,; D. C. Kozawa,; Y. Q. Zhou,; Y. Z. Wang,; Y. W. Sheng,; T. Jiang,; M. S. Strano,; J. H. Warner, Controlling photoluminescence enhancement and energy transfer in WS2:hBN:WS2 vertical stacks by precise interlayer distances. Small 2020, 16, 1905985.
[23]
J. Park,; M. S. Kim,; E. Cha,; J. Kim,; W. Choi, Synthesis of uniform single layer WS2 for tunable photoluminescence. Sci. Rep. 2017, 7, 16121.
[24]
W. T. Hsu,; J. M. Quan,; C. Y. Wang,; L. S. Lu,; M. Campbell,; W. H. Chang,; L. J. Li,; X. Q. Li,; C. K. Shih, Dielectric impact on exciton binding energy and quasiparticle bandgap in monolayer WS2 and WSe2. 2D Mater. 2019, 6, 025028.
[25]
A. Chernikov,; C. Ruppert,; H. M. Hill,; A. F. Rigosi,; T. F. Heinz, Population inversion and giant bandgap renormalization in atomically thin WS2 layers. Nat. Photonics 2015, 9, 466-469.
[26]
Y. C. Yue,; J. C. Chen,; Y. Zhang,; S. S. Ding,; F. L. Zhao,; Y. Wang,; D. H. Zhang,; R. J. Li,; H. L. Dong,; W. P. Hu, et al. Two-dimensional high-quality monolayered triangular WS2 flakes for field-effect transistors. ACS Appl. Mater. Interfaces 2018, 10, 22435-22444.
[27]
Y. J. Gong,; Z. Lin,; G. L. Ye,; G. Shi,; S. M. Feng,; Y. Lei,; A. L. Elias,; N. Perea-Lopez,; R. Vajtai,; H. Terrones, et al. Tellurium-assisted low-temperature synthesis of MoS2 and WS2 monolayers. ACS Nano 2015, 9, 11658-11666.
[28]
L. N. Liu,; J. X. Wu,; L. Y. Wu,; M. Ye,; X. Z. Liu,; Q. Wang,; S. Y. Hou,; P. F. Lu,; L. F. Sun,; J. Y. Zheng, et al. Phase-selective synthesis of 1T' MoS2 monolayers and heterophase bilayers. Nat. Mater. 2018, 17, 1108-1114.
[29]
J. Chen,; G. S. Jung,; G. H. Ryu,; R. J. Chang,; S. Zhou,; Y. Wen,; M. J. Buehler,; J. H. Warner, Atomically sharp dual grain boundaries in 2D WS2 bilayers. Small 2019, 15, 1902590.
[30]
C. Liu,; X. Z. Xu,; L. Qiu,; M. H. Wu,; R. X. Qiao,; L. Wang,; J. H. Wang,; J. J. Niu,; J. Liang,; X. Zhou, et al. Kinetic modulation of graphene growth by fluorine through spatially confined decomposition of metal fluorides. Nat. Chem. 2019, 11, 730-736.
[31]
Y. W. Sheng,; H. J. Tan,; X. C. Wang,; J. H. Warner, Hydrogen addition for centimeter-sized monolayer tungsten disulfide continuous films by ambient pressure chemical vapor deposition. Chem. Mater. 2017, 29, 4904-4911.
[32]
Y. Wang,; J. C. Kim,; R. J. Wu,; J. Martinez,; X. J. Song,; J. Yang,; F. Zhao,; A. Mkhoyan,; H. Y. Jeong,; M. Chhowalla, Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 2019, 568, 70-74.
[33]
H. M. W. Khalil,; M. F. Khan,; J. Eom,; H. Noh, Highly stable and tunable chemical doping of multilayer WS2 field effect transistor: Reduction in contact resistance. ACS Appl. Mater. Interfaces 2015, 7, 23589-23596.
[34]
M. W. Iqbal,; M. Z. Iqbal,; M. F. Khan,; M. A. Kamran,; A. Majid,; T. Alharbi,; J. Eom, Tailoring the electrical and photo-electrical properties of a WS2 field effect transistor by selective n-type chemical doping. RSC Adv. 2016, 6, 24675-24682.
Nano Research
Pages 1659-1662
Cite this article:
Zhou S, Liu L, Cui S, et al. Fast growth of large single-crystalline WS2 monolayers via chemical vapor deposition. Nano Research, 2021, 14(6): 1659-1662. https://doi.org/10.1007/s12274-020-2859-9
Topics:
Part of a topical collection:

1113

Views

16

Crossref

N/A

Web of Science

14

Scopus

1

CSCD

Altmetrics

Received: 03 March 2020
Revised: 03 May 2020
Accepted: 08 May 2020
Published: 09 June 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return