AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Uptake of graphene enhanced the photophosphorylation performed by chloroplasts in rice plants

Kun Lu1Danlei Shen1Shipeng Dong1Chunying Chen2Sijie Lin3Shan Lu4Baoshan Xing5Liang Mao1( )
State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
College Environmental Science & Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
Show Author Information

Graphical Abstract

Abstract

New and enhanced functions were potentially imparted to the plant organelles after interaction with nanoparticles. In this study, we found that ~ 44% and ~ 29% of the accumulated graphene in the rice leaves passively transported to the chloroplasts and thylakoid, respectively, significantly enhanced the fluorescence intensity of chloroplasts, and promoted about 2.4 times higher adenosine triphosphate production than that of controls. The enhancement of graphene on the photophosphorylation was ascribed to two reasons: One is that graphene facilitates the electron transfer process of photosystem II in thylakoid, and the other is that graphene protects the photosystem II against photo-bleaching by acting as a scavenger of reactive oxygen species. Overall, our work here confirmed that graphene translocating in the thylakoid promoted the photosynthetic activity of chloroplast in vivo and in vitro, providing new opportunities for designing biomimetic materials to enhance the solar energy conversion systems, especially for repairing or increasing the photosynthesis activity of the plants grown under stress environment.

Electronic Supplementary Material

Download File(s)
12274_2020_2862_MOESM1_ESM.pdf (2.4 MB)

References

[1]
X. G. Zhu,; S. P. Long,; D. R. Ort, Improving photosynthetic efficiency for greater yield. Annu. Rev. Plant Biol. 2010, 61, 235-261.
[2]
A. A. Boghossian,; F. Sen,; B. M. Gibbons,; S. Sen,; S. M. Faltermeier,; J. P. Giraldo,; G. T. Zhang,; J. Q. Zhang,; D. A. Heller,; M. S. Strano, Application of nanoparticle antioxidants to enable hyperstable chloroplasts for solar energy harvesting. Adv. Energy Mater. 2013, 3, 881-893.
[3]
Y. X. Wang,; S. L. Li,; L. B. Liu,; F. T. Lv,; S. Wang, Conjugated polymer nanoparticles to augment photosynthesis of chloroplasts. Angew. Chem., Int. Ed. 2017, 56, 5308-5311.
[4]
J. P. Giraldo,; M. P. Landry,; S. M. Faltermeier,; T. P. McNicholas,; N. M. Lverson,; A. A. Boghossian,; N. F. Reuel,; A. J. Hilmer,; F. Sen,; J. A. Brew, el al. Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat. Mater. 2014, 13, 400-408.
[5]
Y. Q. Xu,; J. B. Fei,; G. L. Li,; T. T. Yuan,; Y. Li,; C. L. Wang,; X. B. Li,; J. B. Li, Enhanced photophosphorylation of a chloroplast-entrapping long-lived photoacid. Angew. Chem., Int. Ed. 2017, 56, 12903-12907.
[6]
C. Peng,; H. Tong,; C, S. Shen,; L. J. Sun,; P. Yuan,; M. He,; J. Y. Shi, Bioavailability and translocation of metal oxide nanoparticles in the soil-rice plant system. Sci. Total Environ. 2020, 713, 136662.
[7]
C. Peng,; H. Zhang,; H. X. Fang,; C. Xu,; H. M. Huang,; Y. Wang,; L. J. Sun,; X. F. Yuan, Y. X. Chen,; J. Y. Shi, Natural organic matter-induced alleviation of the phytotoxicity to rice (Oryza sativa L.) caused by copper oxide nanoparticles. Environ. Toxicol. Chem. 2015, 34, 1996-2003.
[8]
B. Y. Wu,; L. Z. Zhu,; X. C. Le, Metabolomics analysis of TiO2 nanoparticles induced toxicological effects on rice (Oryza sativa L.). Environ. Pollut. 2017, 230, 302-310.
[9]
J. J. Du,; T. Wang,; Q. X. Zhou,; X. G. Hu,; J. H. Wu,; G. F. Li,; G. Q. Li,; F. Hou,; Y. N. Wu, Graphene oxide enters the rice roots and disturbs the endophytic bacterial communities. Ecotox. Environ. Safe. 2020, 192, 110304.
[10]
H. Z. Zhen,; Z. X. Ji,; K. R. Roy,; M. Gao,; Y. X. Pan,; X. M. Cai,; L. M. Wang,; W. Li,; C. H. Chang,; C. Kaweeteerawat, et al. Engineered graphene oxide nanocomposite capable of preventing the evolution of antimicrobial resistance. ACS Nano 2019, 13, 11488-11499.
[11]
R. B. Li,; N. D. Mansukhani,; L. M. Guiney,; Z. X. Ji,; Y. C. Zhao,; C. H. Chang,; C. T. French,; J. F. Miller,; M. C. Hersam,; A. E. Nel, et al. Identification and optimization of carbon radicals on hydrated graphene oxide for ubiquitous antibacterial coatings. ACS Nano 2016, 10, 10966-10980.
[12]
L. Y. Chen,; C. L. Wang,; H. L. Li,; X. L. Qu,; S. T. Yang,; X. L. Chang, Bioaccumulation and toxicity of 13C-skeleton labeled graphene oxide in wheat. Environ. Sci. Technol. 2017, 51, 10146-10153.
[13]
X. K. Guo,; S. P. Dong,; E. J. Petersen,; S. X. Gao,; Q. G. Huang,; L. Mao, Biological uptake and depuration of radio-labeled graphene by Daphnia magna. Environ. Sci. Technol. 2013, 47, 12524-12531.
[14]
C. Huang,; T. Xia,; J. F. Niu,; Y. Yang,; S. J. Lin,; X. K Wang,; G. Q. Yang,; L. Mao,; B. S. Xing, Transformation of 14C-Labeled graphene to 14CO2 in the shoots of a rice plant. Angew. Chem., Int. Ed. 2018, 57, 9759-9763.
[15]
K. S. Novoselov,; A. K. Geim,; S. V. Morozov,; D. Jiang,; Y. Zhang,; S. V. Dubonos,; I. V. Grigorieva,; A. A. Firsov, Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.
[16]
C. H. Liu,; Y. C. Chang,; T. B. Norris,; Z. H. Zhong, Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nat. Nanotechnol. 2014, 9, 273-278.
[17]
W. Li,; S. S. Wu,; H. R. Zhang,; X. J. Zhang,; J. L. Zhuang,; C. F. Hu,; Y. L. Liu,; B. F. Lei,; L. Ma,; X. J. Wang, Enhanced biological photosynthetic efficiency using light-harvesting engineering with dual-emissive carbon dots. Adv. Funct. Mater. 2018, 28, 1804004.
[18]
T. A. Lonergan,; M. L. Sargent, Regulation of the photosynthesis rhythm in Euglena gracilis II. Involvement of electron flow through both photosystems. Plant Physiol. 1979, 64, 99-103.
[19]
P. D. Gould,; P. Diza,; C. Hogben,; J. Kusakina,; R. Salem,; J. Hwrtwell,; A. Hall, Delayed fluorescence as a universal tool for the measurement of circadian rhythms in higher plants. Plant J. 2009, 58, 893-901.
[20]
P. Cai,; G. L. Li,; Y. Yang,; X. O. Su,; Z. F. Zhang, Co-assembly of thylakoid and graphene oxide as a photoelectrochemical composite film for enhanced mediated electron transfer. Colloids Surf. A 2018, 555, 37-42.
[21]
X. Fang,; K. P. Sokol,; N. Heidary,; T. A. Kandiel,; J. Z. Zhang,; E. Reisner, Structure-activity relationships of hierarchical three-dimensional electrodes with photosystem II for semiartificial photosynthesis. Nano Lett. 2019, 19, 1844-1850.
[22]
J. O. Calkins,; Y. Umasankar,; H. O'Neill,; R. P. Ramasamy, High photo-electrochemical activity of thylakoid-carbon nanotube composites for photosynthetic energy conversion. Energy Environ. Sci. 2013, 6, 1891-1900.
[23]
A. Ventrella,; L. Catucci,; A. Agostiano, Effect of aggregation state, temperature and phospholipids on photobleaching of photosynthetic pigments in spinach Photosystem II core complexes. Bioelectrochemistry 2008, 73, 43-48.
[24]
H. Zhang,; H. Liu,; Z. Q. Tian,; D. L. Lu,; Y. Yu,; S. Cestellos-Blanco,; K. K. Sakimoto,; P. D. Yang, Bacteria photosensitized by intracellular gold nanoclusters for solar fuel production. Nat. Nanotechnol. 2018, 13, 900-905.
[25]
J. G. Liu,; C. C. Mei,; H. Cai,; M. X. Wang, Relationships between subcellular distribution and translocation and grain accumulation of Pb in different rice cultivars. Water Air Soil Pollut. 2015, 226, 93.
[26]
G. L. Li,; J. B. Fei,; Y. Q. Xu,; Y. Li,; J. B. Li, Bioinspired assembly of hierarchical light-harvesting architectures for improved photophosphorylation. Adv. Funct. Mater. 2018, 28, 1706557.
[27]
Z. W. Chen,; G. DeQueiros Silveira,; X. D. Ma,; Y. S. Xie,; Y. A. Wu,; E. Barry,; T. Rajh,; H. C. Fry,; P. D. Laible,; E. A. Rozhkova, Light-gated synthetic protocells for plasmon-enhanced chemiosmotic gradient generation and ATP synthesis. Angew. Chem., Int. Ed. 2019, 58, 4896-4900.
[28]
Y. Q. Xu,; J. B. Fei,; G. L. Li,; T. T. Yuan,; X. Xu,; C. L. Wang,; J. B. Li, Optically matched semiconductor quantum dots improve photophosphorylation performed by chloroplasts. Angew. Chem., Int. Ed. 2018, 57, 6532-6535.
[29]
X. Y. Feng,; Y. Jia,; P. Cai,; J. B. Fei,; J. B. Li, Coassembly of photosystem II and ATPase as artificial chloroplast for light-driven ATP synthesis. ACS Nano 2016, 10, 556-561.
[30]
M. Suga,; F. Akita,; K. Hirata,; G. Ueno,; H. Murakami,; Y. Nakajima,; T. Shimizu,; K. Yamashita,; M. Yamamoto,; H. Ago, et al. Native structure of photosystem II at 1.95 Å resolution viewed by femtosecond X-ray pulses. Nature 2015, 517, 99-103.
[31]
J. R. Shen, The structure of photosystem II and the mechanism of water oxidation in photosynthesis. Annu. Rev. Plant Biol. 2015, 66, 23-48.
[32]
A. T. Jagendorf,; E. Uribe, ATP formation caused by acid-base transition of spinach chloroplasts. Proc. Natl. Acad. Sci. USA 1966, 55, 170-177.
[33]
A. Kanazawa,; D. M. Kramer, In vivo modulation of nonphotochemical exciton quenching (NPQ) by regulation of the chloroplast ATP synthase. Proc. Natl. Acad. Sci. USA 2002, 99, 12789-12794.
[34]
F. Kopnov,; I. Cohen-Ofri,; D. Noy, Electron transport between photosystem II and photosystem I encapsulated in sol-gel glasses. Angew. Chem., Int. Ed. 2011, 50, 12347-12350.
[35]
V. Goltsev,; I. Zaharieva,; P. Chernev,; R. J. Strasser, Delayed fluorescence in photosynthesis. Photosynth. Res. 2009, 101, 217-232.
[36]
J. Buchta,; M. Grabolle,; H. Dau, Photosynthetic dioxygen formation studied by time-resolved delayed fluorescence measurements-method, rationale, and results on the activation energy of dioxygen formation. Biochim. Biophys. Acta 2007, 1767, 565-574.
[37]
T. F. Yeh,; C. Y. Teng,; S. J. Chen,; H. Teng, Nitrogen-doped graphene oxide quantum dots as photocatalysts for overall water-splitting under visible light illumination. Adv. Mater. 2014, 26, 3297-3303.
[38]
H. Y. Zou,; B. W. He,; P. Y. Kuang,; J. G. Yu,; K. Fan, NixSy nanowalls/nitrogen-doped graphene foam is an efficient trifunctional catalyst for unassisted artificial photosynthesis. Adv. Funct. Mater. 2018, 28, 1706917.
[39]
D. Pankratov,; J. M. Zhao,; M. A. Nur,; F. Shen,; D. Leech,; Q. J. Chi,; G. Pankratova,; L. Gorton, The influence of surface composition of carbon nanotubes on the photobioelectrochemical activity of thylakoid bioanodes mediated by osmium-complex modified redox polymer. Electrochim. Acta 2019, 310, 20-25.
[40]
C. Gao,; Q. X. Huang,; Q. P, Lan,; Y. Feng,; F. Tang,; P. M. Hoi Maggie,; J. X. Zhang,; M. Y. Lee Mimon,; R B. Wang, A user-friendly herbicide derived from photo-responsive supramolecular vesicles. Nat. Commun. 2018, 9, 2967.
[41]
I. Vass,; S. Styring,; T. Hundal,; A. Koivuniemi,; E. Aro,; B. Adnersson, Reversible and irreversible intermediates during photoinhibition of photosystem II. Stable reduced QA species promote chlorophyll triplet formation. Proc. Natl. Acad. Sci. USA 1992, 89, 1408-1412.
[42]
N. Keren,; A. Berg,; P. J. M. Van Kan,; H. Levanon,; I. Ohad, Mechanism of photosystem II photoinactivation and D1 protein degradation at low light: The role of back electron flow. Proc. Natl. Acad. Sci. USA 1997, 94, 1579-1584.
[43]
Y. Kusama,; S. Inoue,; H. Jimbo,; S. Takaichi,; K. Sonoike,; Y. Hihara,; Y. Nishiyama, Zeaxanthin and echinenone protect the repair of photosystem II from inhibition by singlet oxygen in Synechocystis sp. PCC 6803. Plant. Cell. Physiol. 2015, 56, 906-916.
[44]
A. Zavafer,; W. S. Chow,; M. H. Cheah, The action spectrum of photosystem II photoinactivation in visible light. J. Photochem. Photobiol. B 2015, 152, 247-260.
[45]
Y. Qiao,; P. P. Zhang,; C. M. Wang,; L. Y. Ma,; M. Su, Reducing X-ray induced oxidative damages in fibroblasts with graphene oxide. Nanomaterials 2014, 4, 522-534.
[46]
Y. Qiu,; Z. Y. Wang,; A. C. E. Owens,; I. Kulaots,; Y. T. Chen,; A. B. Kane,; R. H. Hurt, Antioxidant chemistry of graphene-based materials and its role in oxidation protection technology. Nanoscale 2014, 6, 11744-11755.
[47]
W. Xia,; H. R. Xue,; J. W. Wang,; T. Wang,; L. Song,; H. Guo,; X. L. Fan,; H. Gong,; J. P. He, Functionlized graphene serving as free radical scavenger and corrosion protection in gamma-irradiated epoxy composites. Carbon 2016, 101, 315-323.
[48]
M. Gao,; Z. Z. Wang,; H. Z. Zheng,; L. Wang,; S. J. Xu,; X. Liu,; W. Li,; Y. X. Pan,; W. L. Wang,; X. M. Cai, et al. Two-dimensional tin selenide (SnSe) nanosheets capable of mimicking key dehydrogenases in cellular metabolism. Angew. Chem., Int. Ed. 2020, 59, 3618-3623.
[49]
X. M. Cai,; J. Dong,; J. Liu,; H. Z. Zheng,; C. Kaweeteerawat,; F. J. Wang,; Z. X. Ji,; R. B. Li, Multi-hierarchical profiling the structure-activity relationships of engineered nanomaterials at nano-bio interfaces. Nat. Commun. 2018, 9, 4416.
Nano Research
Pages 3198-3205
Cite this article:
Lu K, Shen D, Dong S, et al. Uptake of graphene enhanced the photophosphorylation performed by chloroplasts in rice plants. Nano Research, 2020, 13(12): 3198-3205. https://doi.org/10.1007/s12274-020-2862-1
Topics:

827

Views

23

Crossref

N/A

Web of Science

24

Scopus

4

CSCD

Altmetrics

Received: 17 March 2020
Revised: 05 May 2020
Accepted: 08 May 2020
Published: 16 June 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return