Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Interfacial engineering of Ni/V2O3 for hydrogen evolution reaction

Yang Chen1,§Yuan Rao1,§Rongzhi Wang1Yanan Yu1Qiulin Li2Shujuan Bao2Maowen Xu2Qin Yue1Yanning Zhang1()Yijin Kang1()
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China

§ Yang Chen and Yuan Rao contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Electrocatalytic water splitting offers a sustainable route for hydrogen production, enabling the clean and renewable alternative energy system of hydrogen economy. The scarcity and high-cost of platinum-group-metal (PGM) materials urge the exploration of high-performance non-PGM electrocatalysts. Herein, a unique hierarchical structure of Ni/V2O3 with extraordinary electrocatalytic performance (e.g., overpotentials as low as 22 mV at 20 mA·cm-2 and 94 mV at 100 mA·cm-2) toward hydrogen evolution reaction in alkaline electrolyte (1 M KOH) is reported. The investigation on the hierarchical Ni/V2O3 with a bimodal size-distribution also offers insight of interfacial engineering that only proper Ni/V2O3 interface can effectively improve H2O adsorption, H2O dissociation as well as H adsorption, for an efficient hydrogen production.

Electronic Supplementary Material

Download File(s)
12274_2020_2865_MOESM1_ESM.pdf (9 MB)

References

[1]
Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Norskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.
[2]
Wang, J.; Xu, F.; Jin, H. Y.; Chen, Y. Q.; Wang, Y. Non-noble metal-based carbon composites in hydrogen evolution reaction: Fundamentals to applications. Adv. Mater. 2017, 29, 1605838.
[3]
Wang, L.; Zhu, Y. H.; Zeng, Z. H.; Lin, C.; Giroux, M.; Jiang, L.; Han, Y.; Greeley, J.; Wang, C.; Jin, J. Platinum-nickel hydroxide nanocomposites for electrocatalytic reduction of water. Nano Energy 2017, 31, 456-461.
[4]
Huang, Y.; Gong, Q. F.; Song, X. N.; Feng, K.; Nie, K. Q.; Zhao, F. P.; Wang, Y. Y.; Zeng, M.; Zhong, J.; Li, Y. G. Mo2C nanoparticles dispersed on hierarchical carbon microflowers for efficient electrocatalytic hydrogen evolution. ACS Nano 2016, 10, 11337-11343.
[5]
Subbaraman, R.; Tripkovic, D.; Chang, K. C.; Strmcnik, D.; Paulikas, A. P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N. M. Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nat. Mater. 2012, 11, 550-557.
[6]
Subbaraman, R.; Tripkovic, D.; Strmcnik, D.; Chang, K. C.; Uchimura, M.; Paulikas, A. P.; Stamenkovic, V.; Markovic, N. M. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science 2011, 334, 1256-1260.
[7]
Weng, Z.; Liu, W.; Yin, L. C.; Fang, R. P.; Li, M.; Altman, E. I.; Fan, Q.; Li, F.; Cheng, H. M.; Wang, H. L. Metal/oxide interface nanostructures generated by surface segregation for electrocatalysis. Nano Lett. 2015, 15, 7704-7710.
[8]
Gong, M.; Wang, D. Y.; Chen, C. C.; Hwang, B. J.; Dai, H. J. A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Res. 2016, 9, 28-46.
[9]
Zeng, M.; Li, Y. G. Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A 2015, 3, 14942-14962.
[10]
Chen, Z. Y.; Song, Y.; Cai, J. Y.; Zheng, X. S.; Han, D. D.; Wu, Y. S.; Zang, Y. P.; Niu, S. W.; Liu, Y.; Zhu, J. F. et al. Tailoring the d-band centers enables Co4N nanosheets to be highly active for hydrogen evolution catalysis. Angew. Chem., Int. Ed. 2018, 57, 5076-5080.
[11]
Qu, Y. J.; Yang, M. Y.; Chai, J. W.; Tang, Z.; Shao, M. M.; Kwok, C. T.; Yang, M.; Wang, Z. Y.; Chua, D.; Wang, S. J. et al. Facile synthesis of vanadium-doped Ni3S2 nanowire arrays as active electrocatalyst for hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2017, 9, 5959-5967.
[12]
Ming, M.; Ma, Y. L.; Zhang, Y.; Huang, L. B.; Zhao, L.; Chen, Y. Y.; Zhang, X.; Fan, G. Y.; Hu, J. S. 3D nanoporous Ni/V2O3 hybrid nanoplate assemblies for highly efficient electrochemical hydrogen evolution. J. Mater. Chem. A 2018, 6, 21452-21457.
[13]
Ji, D.; Peng, L. S.; Shen, J. J.; Deng, M. M.; Mao, Z. X.; Tan, L. Q.; Wang, M. J.; Xiang, R.; Wang, J.; Shah, S. S. A. Inert V2O3 oxide promotes the electrocatalytic activity of Ni metal for alkaline hydrogen evolution. Chem. Commun. 2019, 55, 3290-3293.
[14]
Wu, C. H.; Liu, C.; Su, D.; Xin, H. L.; Fang, H. T.; Eren, B.; Zhang, S.; Murray, C. B.; Salmeron, M. B. Bimetallic synergy in cobalt-palladium nanocatalysts for CO oxidation. Nat. Catal. 2019, 2, 78-85.
[15]
Liu, C.; Ma, Z.; Cui, M. Y.; Zhang, Z. Y.; Zhang, X.; Su, D.; Murray, C. B.; Wang, J. X.; Zhang, S. Favorable core/shell interface within Co2P/Pt nanorods for oxygen reduction electrocatalysis. Nano Lett. 2018, 18, 7870-7875.
[16]
Kang, Y. J.; Yang, P. D.; Markovic, N. M.; Stamenkovic, V. R. Shaping electrocatalysis through tailored nanomaterials. Nano Today 2016, 11, 587-600.
[17]
Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339-1343.
[18]
Li, Y. G.; Wang, H. L.; Xie, L. M.; Liang, Y. Y.; Hong, G. S.; Dai, H. J. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2011, 133, 7296-9.
[19]
Liao, H. B.; Fisher, A.; Xu, Z. J. Surface segregation in bimetallic nanoparticles: A critical issue in electrocatalyst engineering. Small 2015, 11, 3221-3246.
[20]
Wang, Y. Q.; Zou, Y. Q.; Tao, L.; Wang, Y. Y.; Huang, G.; Du, S. Q.; Wang, S. Y. Rational design of three-phase interfaces for electrocatalysis. Nano Res. 2019, 12, 2055-2066.
[21]
Xu, H.; Chu, W.; Sun, W. J.; Jiang, C. F.; Liu, Z. Q. DFT studies of Ni cluster on graphene surface: Effect of CO2 activation. RSC Adv. 2016, 6, 96545-96553.
[22]
Green, I. X.; Tang, W. J.; Neurock, M.; Yates, J. T. Jr. Spectroscopic observation of dual catalytic sites during oxidation of CO on a Au/TiO2 catalyst. Science 2011, 333, 736-739.
[23]
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.
[24]
Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59(3), 1758-1775.
[25]
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
[26]
Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188-5192.
[27]
Klimeš, J.; Bowler, D. R.; Michaelides, A. Van der Waals density functionals applied to solids. Phys. Rev. B 2011, 83, 195131.
[28]
Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901-9904.
[29]
Yu, J. Y.; Zhou, W. J.; Xiong, T. L.; Wang, A. L.; Chen, S. W.; Chu, B. L. Enhanced electrocatalytic activity of Co@N-doped carbon nanotubes by ultrasmall defect-rich TiO2 nanoparticles for hydrogen evolution reaction. Nano Res. 2017, 10, 2599-2609.
[30]
Yao, Q. L.; Lu, Z. H.; Yang, Y. W.; Chen, Y. Z.; Chen, X. S.; Jiang, H. L. Facile synthesis of graphene-supported Ni-CeOx nanocomposites as highly efficient catalysts for hydrolytic dehydrogenation of ammonia borane. Nano Res. 2018, 11, 4412-4422.
[31]
Shi, H. H.; Liang, H. F.; Ming, F. W.; Wang, Z. C. Efficient overall water-splitting electrocatalysis using lepidocrocite VOOH hollow nanospheres. Angew. Chem., Int. Ed. 2017, 56, 573-577.
[32]
Fan, K.; Chen, H.; Ji, Y. F.; Huang, H.; Claesson, P. M.; Daniel, Q.; Philippe, B.; Rensmo, H.; Li, F. S.; Luo, Y. et al. Nickel-vanadium monolayer double hydroxide for efficient electrochemical water oxidation. Nat. Commun. 2016, 7, 11981.
[33]
An, L.; Zhang, Z. Y.; Feng, J. R.; Lv, F.; Li, Y. X.; Wang, R.; Lu, M.; Gupta, R. B.; Xi, P. X.; Zhang, S. Heterostructure-promoted oxygen electrocatalysis enables rechargeable zinc-air battery with neutral aqueous electrolyte. J. Am. Chem. Soc. 2018, 140, 17624-17631.
[34]
Ou, G.; Xu, Y. S.; Wen, B.; Lin, R.; Ge, B. H.; Tang, Y.; Liang, Y. W.; Yang, C.; Huang, K.; Zu, D. et al. Tuning defects in oxides at room temperature by lithium reduction. Nat. Commun. 2018, 9, 1302.
[35]
Bao, K. Y.; Mao, W. T.; Liu, G. Y.; Ye, L. Q.; Xie, H. Q.; Ji, S. F.; Wang, D. S.; Chen, C.; Li, Y. D. Preparation and electrochemical characterization of ultrathin WO3-x /C nanosheets as anode materials in lithium ion batteries. Nano Res. 2017, 10, 1903-1911.
[36]
Wu, H.; Lu, X.; Zheng, G. F.; Ho, G. W. Topotactic engineering of ultrathin 2D nonlayered nickel selenides for full water electrolysis. Adv. Energy Mater. 2018, 8, 1702704.
[37]
Vitos, L.; Ruban, A. V.; Skriver, H. L.; Kollár, J. The surface energy of metals. Surf. Sci. 1998, 411, 186-202.
[38]
Ji, C. C.; Bi, J. L.; Wang, S.; Zhang, X. J.; Yang, S. C. Ni nanoparticle doped porous VN nanoflakes assembled into hierarchical hollow microspheres with a structural inheritance from the Ni1-xVxO2 cathode material for high performance asymmetric supercapacitors. J. Mater. Chem. A 2016, 4, 2158-2168.
[39]
Xiao, Y. L.; Tian, C. G.; Tian, M.; Wu, A. P.; Yan, H. J.; Chen, C. F.; Wang, L.; Jiao, Y. Q.; Fu, H. G. Cobalt-vanadium bimetal-based nanoplates for efficient overall water splitting. Sci. China Mater. 2018, 61, 80-90.
[40]
Yin, Y. D.; Rioux, R. M.; Erdonmez, C. K.; Hughes, S.; Somorjai, G. A.; Paul Alivisatos, A. Formation of hollow nanocrystals through the nanoscale kirkendall effect. Science 2004, 304, 711-714.
[41]
González, E.; Arbiol, J.; Puntes, V. F. Carving at the nanoscale: Sequential galvanic exchange and kirkendall growth at room temperature. Science 2011, 334, 1377-1380.
[42]
Sun, T. T.; Zhao, S.; Chen, W. X.; Zhai, D.; Dong, J. C.; Wang, Y.; Zhang, S. L.; Han, A. J.; Gu, L.; Yu, R. et al. Single-atomic cobalt sites embedded in hierarchically ordered porous nitrogen-doped carbon as a superior bifunctional electrocatalyst. Proc. Natl. Acad. Sci. USA 2018, 115, 12692-12697.
[43]
Liao, L.; Wang, S. N.; Xiao, J. J.; Bian, X. J.; Zhang, Y. H.; Scanlon, M. D.; Hu, X. L.; Tang, Y.; Liu, B. H.; Girault, H. H. A nanoporous molybdenum carbide nanowire as an electrocatalyst for hydrogen evolution reaction. Energy Environ. Sci. 2014, 7, 387-392.
[44]
Wang, S. Y.; Zhang, L.; Li, X.; Li, C. L.; Zhang, R. J.; Zhang, Y. J.; Zhu, H. W. Sponge-like nickel phosphide-carbon nanotube hybrid electrodes for efficient hydrogen evolution over a wide pH range. Nano Res. 2017, 10, 415-425.
[45]
Cargnello, M.; Doan-Nguyen, V. V. T.; Gordon, T. R.; Diaz, R. E.; Stach, E. A.; Gorte, R. J.; Fornasiero, P.; Murray, C. B. Control of metal nanocrystal size reveals metal-support interface role for ceria catalysts. Science 2013, 341, 771-773.
[46]
Kang, Y. J.; Ye, X. C.; Chen, J.; Qi, L.; Diaz, R. E.; Doan-Nguyen, V.; Xing, G. Z.; Kagan, C. R.; Li, J.; Gorte, R. J. et al. Engineering catalytic contacts and thermal stability: Gold/iron oxide binary nanocrystal superlattices for CO oxidation. J. Am. Chem. Soc. 2013, 135, 1499-1505.
[47]
Zheng, J.; Sheng, W. C.; Zhuang, Z. B.; Xu, B. J.; Yan, Y. S. Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy. Sci. Adv. 2016, 2, e1501602.
[48]
Intikhab, S.; Rebollar, L.; Fu, X. B.; Yue, Q.; Li, Y. W.; Kang, Y. J.; Tang, M. H.; Snyder, J. D. Exploiting dynamic water structure and structural sensitivity for nanoscale electrocatalyst design. Nano Energy 2019, 64, 103963.
[49]
Danilovic, N.; Subbaraman, R.; Strmcnik, D.; Chang, K. C.; Paulikas, A. P.; Stamenkovic, V. R.; Markovic, N. M. Enhancing the alkaline hydrogen evolution reaction activity through the bifunctionality of Ni(OH)2/metal catalysts. Angew. Chem., Int. Ed. 2012, 51, 12495-12498.
[50]
Lin, H. L.; Shi, Z. P.; He, S. N.; Yu, X.; Wang, S. N.; Gao, Q. S.; Tang, Y. Heteronanowires of MoC-Mo2C as efficient electrocatalysts for hydrogen evolution reaction. Chem. Sci. 2016, 7, 3399-3405.
[51]
Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 2005, 152, J23-J26.
[52]
Wang, P. T.; Zhang, X.; Zhang, J.; Wan, S.; Guo, S. J.; Lu, G.; Yao, J. L.; Huang, X. Q. Precise tuning in platinum-nickel/nickel sulfide interface nanowires for synergistic hydrogen evolution catalysis. Nat. Commun. 2017, 8, 14580.
[53]
Chen, S. C.; Kang, Z. X.; Hu, X.; Zhang, X. D.; Wang, H.; Xie, J. F.; Zheng, X. S.; Yan, W. S.; Pan, B. C.; Xie, Y. Delocalized spin states in 2D atomic layers realizing enhanced electrocatalytic oxygen evolution. Adv. Mater. 2017, 29, 1701687.
[54]
Pan, Y.; Sun, K. A.; Lin, Y.; Cao, X.; Cheng, Y. S.; Liu, S. J.; Zeng, L. Y.; Cheong, W. C.; Zhao, D.; Wu, K. L. et al. Electronic structure and d-band center control engineering over M-doped CoP (M = Ni, Mn, Fe) hollow polyhedron frames for boosting hydrogen production. Nano Energy 2019, 56, 411-419.
Nano Research
Pages 2407-2412
Cite this article:
Chen Y, Rao Y, Wang R, et al. Interfacial engineering of Ni/V2O3 for hydrogen evolution reaction. Nano Research, 2020, 13(9): 2407-2412. https://doi.org/10.1007/s12274-020-2865-y
Topics:
Metrics & Citations  
Article History
Copyright
Return