AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Accelerated oxygen reduction on Fe/N/C catalysts derived from precisely-designed ZIF precursors

Ergui Luo1,2Chen Wang1Yang Li1,2Xian Wang1,2Liyuan Gong1,2Tuo Zhao1,2Zhao Jin1Junjie Ge1,2( )Changpeng Liu1,2( )Wei Xing1,2,3( )
Laboratory of Advanced Power Sources, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
Show Author Information

Graphical Abstract

Abstract

Fe/N/C material is the most competitive alternative to precious-metal catalysts for oxygen reduction. In view of the present consensus on active centers, further effort is directed at maximizing the density of single Fe atoms. Here, the imperfections in commonly used doping strategy of Fe for the synthesis of zeolitic imidazolateframework (ZIF)-derived Fe/N/C catalysts are revealed. More importantly, a strikingly improved catalyst is obtained by a 'second pyrolysis’ method and delivers a half-wave potential of 0.825 V (vs. RHE) in acidic media. The strong confinement effect of carbonaceous host accounts for the formation of dense single-atom sites and thus the high activity. Our findings will potentially facilitate future improvement of M/N/C catalysts.

Electronic Supplementary Material

Download File(s)
12274_2020_2868_MOESM1_ESM.pdf (4.6 MB)

References

[1]
Steele, B. C.; Heinzel, A. Materials for fuel-cell technologies. Nature 2001, 414, 345-352.
[2]
Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 2012, 486, 43-51.
[3]
Tian, J.; Morozan, A.; Sougrati, M. T.; Lefevre, M.; Chenitz, R.; Dodelet, J. P.; Jones, D.; Jaouen, F. Optimized synthesis of Fe/N/C cathode catalysts for PEM fuel cells: A matter of iron-ligand coordination strength. Angew. Chem., Int. Ed. 2013, 52, 6867-6870.
[4]
Xia, W.; Mahmood, A.; Liang, Z. B.; Zou, R. Q.; Guo, S. J. Earth-abundant nanomaterials for oxygen reduction. Angew. Chem., Int. Ed. 2016, 55, 2650-2676.
[5]
Chung, H. T.; Cullen, D. A.; Higgins, D.; Sneed, B. T.; Holby, E. F.; More, K. L.; Zelenay, P. Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst. Science 2017, 357, 479-484.
[6]
Martinez, U.; Komini Babu, S.; Holby, E. F.; Chung, H. T.; Yin, X.; Zelenay, P. Progress in the development of Fe-based PGM-free electrocatalysts for the oxygen reduction reaction. Adv. Mater. 2019, 31, 1806545.
[7]
Wang, X. X.; Swihart, M. T.; Wu, G. Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation. Nat. Catal. 2019, 2, 578-589.
[8]
Chung, H. T.; Won, J. H.; Zelenay, P. Active and stable carbon nanotube/nanoparticle composite electrocatalyst for oxygen reduction. Nat. Commun. 2013, 4, 1922.
[9]
Wu, G.; More, K. L.; Johnston, C. M.; Zelenay, P. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 2011, 332, 443-447.
[10]
Singh, K.; Razmjooei, F.; Yu, J. S. Active sites and factors influencing them for efficient oxygen reduction reaction in metal-N coordinated pyrolyzed and non-pyrolyzed catalysts: A review. J. Mater. Chem. A 2017, 5, 20095-20119.
[11]
Jasinski, R. A new fuel cell cathode catalyst. Nature 1964, 201, 1212-1213.
[12]
van den Brink, F.; Barendrecht, E.; Visscher, W. The cathodic reduction of oxygen: A review with emphasis on macrocyclic organic metal complexes as electrocatalysts. Recl. Trav. Chim. Pays Bas 1980, 99, 253-262.
[13]
Zagal, J. H. Metallophthalocyanines as catalysts in electrochemical reactions. Coord. Chem. Rev. 1992, 119, 89-136.
[14]
Vasudevan, P.; Santosh; Mann, N.; Tyagi, S. Transition metal complexes of porphyrins and phthalocyanines as electrocatalysts for dioxygen reduction. Transition Met. Chem. 1990, 15, 81-90.
[15]
Li, Z. P.; Liu, B. H. The use of macrocyclic compounds as electrocatalysts in fuel cells. J. Appl. Electrochem. 2010, 40, 475-483.
[16]
Bouwkamp-Wijnoltz, A. L.; Visscher, W.; van Veen, J. A. R.; Boellaard, E.; van der Kraan, A. M.; Tang, S. C. On active-site heterogeneity in pyrolyzed carbon-supported iron porphyrin catalysts for the electrochemical reduction of oxygen: An in situ Mössbauer study. J. Phys. Chem. B 2002, 106, 12993-13001.
[17]
Lefèvre, M.; Proietti, E.; Jaouen, F.; Dodelet, J. P. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 2009, 324, 71-74.
[18]
Ramaswamy, N.; Tylus, U.; Jia, Q. Y.; Mukerjee, S. Activity descriptor identification for oxygen reduction on nonprecious electrocatalysts: Linking surface science to coordination chemistry. J. Am. Chem. Soc. 2013, 135, 15443-15449.
[19]
Liang, W.; Chen, J. X.; Liu, Y. W.; Chen, S. L. Density-functional-theory calculation analysis of active sites for four-electron reduction of O2 on Fe/N-doped graphene. ACS Catal. 2014, 4, 4170-4177.
[20]
Zitolo, A.; Goellner, V.; Armel, V.; Sougrati, M. T.; Mineva, T.; Stievano, L.; Fonda, E.; Jaouen, F. Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials. Nat. Mater. 2015, 14, 937-942.
[21]
Chen, Y. J.; Ji, S. F.; Wang, Y. G.; Dong, J. C; Chen, W. X.; Li, Z.; Shen, R. A.; Zheng, L. R.; Zhuang, Z. B.; Wang, D. S. et al. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2017, 56, 6937-6941.
[22]
Li, J. K.; Ghoshal, S.; Liang, W. T.; Sougrati, M. T.; Jaouen, F.; Halevi, B.; McKinney, S.; McCool, G.; Ma, C. R.; Yuan, X. X. et al. Structural and mechanistic basis for the high activity of Fe-N-C catalysts toward oxygen reduction. Energy Environ. Sci. 2016, 9, 2418-2432.
[23]
Jia, Q. Y.; Ramaswamy, N.; Hafiz, H.; Tylus, U.; Strickland, K.; Wu, G.; Barbiellini, B.; Bansil, A.; Holby, E. F.; Zelenay, P. et al. Experimental observation of redox-induced Fe-N switching behavior as a determinant role for oxygen reduction activity. ACS Nano 2015, 9, 12496-12505.
[24]
Mun, Y.; Lee, S.; Kim, K.; Kim, S.; Lee, S.; Han, J. W.; Lee, J. Versatile strategy for tuning ORR activity of a single Fe-N4 site by controlling electron-withdrawing/donating properties of a carbon plane. J. Am. Chem. Soc. 2019, 141, 6254-6262.
[25]
Wan, X.; Liu, X. F.; Li, Y. C.; Yu, R. H.; Zheng, L. R.; Yan, W. S.; Wang, H.; Xu, M.; Shui, J. L. Fe-N-C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nat. Catal. 2019, 2, 259-268.
[26]
Gewirth, A. A.; Varnell, J. A.; DiAscro, A. M. Nonprecious metal catalysts for oxygen reduction in heterogeneous aqueous systems. Chem. Rev. 2018, 118, 2313-2339.
[27]
Nie, Y.; Wei, Z. D. Electronic and physical property manipulations: Recent achievements towards heterogeneous carbon-based catalysts for oxygen reduction reaction. ChemCatChem 2019, 11, 5885-5897.
[28]
Yin, P. Q.; Yao, T.; Wu, Y.; Zheng, L. R.; Lin, Y.; Liu, W.; Ju, H. X.; Zhu, J. F.; Hong, X.; Deng, Z. X. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem., Int. Ed. 2016, 55, 10800-10805.
[29]
Wang, J.; Huang, Z. Q.; Liu, W.; Chang, C. R.; Tang, H. L.; Li, Z. J.; Chen, W. X.; Jia, C. J.; Yao, T.; Wei, S. Q. et al. Design of N-coordinated dual-metal sites: A stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 2017, 139, 17281-17284.
[30]
Xiao, M. L.; Zhu, J. J.; Ma, L.; Jin, Z.; Ge, J. J.; Deng, X.; Hou, Y.; He, Q. G.; Li, J. K.; Jia, Q. Y. et al. Microporous framework induced synthesis of single-atom dispersed Fe-N-C acidic ORR catalyst and its in situ reduced Fe-N4 active site identification revealed by X-ray absorption spectroscopy. ACS Catal. 2018, 8, 2824-2832.
[31]
Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067-2080.
[32]
Wang, X. J.; Zhang, H. G.; Lin, H. H.; Gupta, S.; Wang, C.; Tao, Z. X.; Fu, H.; Wang, T.; Zheng, J.; Wu, G. et al. Directly converting Fe-doped metal-organic frameworks into highly active and stable Fe-N-C catalysts for oxygen reduction in acid. Nano Energy 2016, 25, 110-119.
[33]
Armel, V.; Hindocha, S.; Salles, F.; Bennett, S.; Jones, D.; Jaouen, F. Structural descriptors of zeolitic-imidazolate frameworks are keys to the activity of Fe-N-C catalysts. J. Am. Chem. Soc. 2017, 139, 453-464.
[34]
Ye, Y. F.; Cai, F.; Li, H. B.; Wu, H. H.; Wang, G. X.; Li, Y. S.; Miao, S.; Xie, S. H.; Si, R.; Wang, J. et al. Surface functionalization of ZIF-8 with ammonium ferric citrate toward high exposure of Fe-N active sites for efficient oxygen and carbon dioxide electroreduction. Nano Energy 2017, 38, 281-289.
[35]
Lai, Q. X.; Zheng, L. R.; Liang, Y. Y.; He, J. P.; Zhao, J. X.; Chen, J. H. Metal-organic-framework-derived Fe-N/C electrocatalyst with five-coordinated Fe-Nx sites for advanced oxygen reduction in acid media. ACS Catal. 2017, 7, 1655-1663.
[36]
Jin, H. H.; Zhou, H.; He, D. P.; Wang, Z. H.; Wu, Q. L.; Liang, Q. R.; Liu, S. L.; Mu, S. C. MOF-derived 3D Fe-N-S co-doped carbon matrix/nanotube nanocomposites with advanced oxygen reduction activity and stability in both acidic and alkaline media. Appl. Catal. B: Environ. 2019, 250, 143-149.
[37]
Chen, X. D.; Wang, N.; Shen, K.; Xie, Y. K.; Tan, Y. P.; Li, Y. W. MOF-derived isolated Fe atoms implanted in N-doped 3D hierarchical carbon as an efficient ORR electrocatalyst in both alkaline and acidic media. ACS Appl. Mater. Interfaces 2019, 11, 25976-25985.
[38]
Liu, X.; Liu, H.; Chen, C.; Zou, L. L.; Li, Y.; Zhang, Q.; Yang, B.; Zou, Z. Q.; Yang, H. Fe2N nanoparticles boosting FeNx moieties for highly efficient oxygen reduction reaction in Fe-N-C porous catalyst. Nano Res. 2019, 12, 1651-1657.
[39]
Li, F.; Ding, X. B.; Cao, Q. C.; Qin, Y. H.; Wang, C. W. A ZIF-derived hierarchically porous Fe-Zn-N-C catalyst synthesized via a two-stage pyrolysis for the highly efficient oxygen reduction reaction in both acidic and alkaline media. Chem. Commun. 2019, 55, 13979-13982.
[40]
Qiao, M. F.; Wang, Y.; Wang, Q.; Hu, G. Z.; Mamat, X.; Zhang, S. S.; Wang, S. Y. Hierarchically ordered porous carbon with atomically dispersed FeN4 for ultra-efficient oxygen reduction reaction in proton-exchange membrane fuel cells. Angew. Chem., Int. Ed. 2020, 59, 2688-2694.
[41]
Zhang, H. G.; Chung, H. T.; Cullen, D. A.; Wagner, S.; Kramm, U. I.; More, K. L.; Zelenay, P.; Wu, G. High-performance fuel cell cathodes exclusively containing atomically dispersed iron active sites. Energy Environ. Sci. 2019, 12, 2548-2558.
[42]
Deng, Y. J.; Chi, B.; Li, J.; Wang, G. H.; Zheng, L.; Shi, X. D.; Cui, Z. M.; Du, L.; Liao, S. J.; Zang, K. T. et al. Atomic Fe-doped MOF-derived carbon polyhedrons with high active-center density and ultra-high performance toward PEM fuel cells. Adv. Energy Mater. 2019, 9, 1802856.
[43]
Gao, L. Q.; Xiao, M. L.; Jin, Z.; Liu, C. P.; Zhu, J. B.; Ge, J. J.; Xing, W. Correlating Fe source with Fe-N-C active site construction: Guidance for rational design of high-performance ORR catalyst. J. Energy Chem. 2018, 27, 1668-1673.
[44]
Garsany, Y.; Baturina, O. A.; Swider-Lyons, K. E.; Kocha, S. S. Experimental methods for quantifying the activity of platinum electrocatalysts for the oxygen reduction reaction. Anal. Chem. 2010, 82, 6321-6328.
[45]
Zhu, J. B.; Xiao, M. L.; Liu, C. P.; Ge, J. J.; St-Pierre, J.; Xing, W. Growth mechanism and active site probing of Fe3C@N-doped carbon nanotubes/C catalysts: Guidance for building highly efficient oxygen reduction electrocatalysts. J. Mater. Chem. A 2015, 3, 21451-21459.
[46]
Jaouen, F.; Lefèvre, M.; Dodelet, J. P.; Cai, M. Heat-treated Fe/N/C catalysts for O2 electroreduction: are active sites hosted in micropores? J. Phys. Chem. B 2006, 110, 5553-5558.
[47]
Westre, T. E.; Kennepohl, P.; DeWitt, J. G.; Hedman, B.; Hodgson, K. O.; Solomon, E. I. A multiplet analysis of Fe K-edge 1s → 3d pre-edge features of iron complexes. J. Am. Chem. Soc. 1997, 119, 6297-6314.
Nano Research
Pages 2420-2426
Cite this article:
Luo E, Wang C, Li Y, et al. Accelerated oxygen reduction on Fe/N/C catalysts derived from precisely-designed ZIF precursors. Nano Research, 2020, 13(9): 2420-2426. https://doi.org/10.1007/s12274-020-2868-8
Topics:

845

Views

49

Crossref

N/A

Web of Science

47

Scopus

6

CSCD

Altmetrics

Received: 11 January 2020
Revised: 20 April 2020
Accepted: 10 May 2020
Published: 16 June 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return