AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Controlled growth and composition of multivariate metal-organic frameworks-199 via a reaction-diffusion process

Razan Issa1,§Fayrouz Abou Ibrahim1,§Mazen Al-Ghoul1,2,( )Mohamad Hmadeh1,( )
Department of Chemistry, American University of Beirut, P.O.Box 11-0236, Riad El-Solh 1107 2020, Beirut, Lebanon
Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal H2A 0B8, Canada

§ Razan Issa and Fayrouz Abou Ibrahim contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

In this paper, we exploit our prior successful synthesis of MOF-199 single crystals using the reaction-diffusion framework (RDF), to synthesize multivariate metal-organic frameworks (MTV-MOFs) version with enhanced properties. The MTV-MOFs are synthesized by creating defects within the MOF-199 crystal structure by integrating organic linkers entailing different functional groups. Accordingly, 5-aminoisophthalic acid (NH2-BDC) and 5-hydroxyisophthalic acid (OH-BDC) are separately mixed with 1,3,5-benzenetricarboxylic acid (BTC) in three different starting ratios of X-BDC:BTC (1:3, 1:1) and 3:1). The effects of this linker on the morphology of the synthesized MTV-MOFs, their thermal stability, and their surface area are investigated. The extent of the incorporation of the linkers in the framework is elucidated via 1H-NMR spectroscopy and it is shown that the incorporation varies as a function of the location along the tubular reactor, a characteristic of RDF. The enhanced properties of the synthesized MTV-MOFs are further demonstrated by measuring its adsorptive capability for methylene blue (MB) and rhodamine B (Rh B) in aqueous solution, and compared with that of the as-synthesized MOF-199. The kinetic and thermodynamic studies reveal that MTV-MOFs with the ratio of X-BDC:BTC (1:1) exhibit the best uptakes of MB (263 mg/g) for X = OH and Rh B (156 mg/g) for X = NH2. The adsorbents are also easily regenerated for three consecutive cycles without losing their efficiency. We finally demonstrate that MTV-MOFs can be designed to tune the dye removal selectivity and enhance the removal capacity of both MB and RhB in a binary aqueous solution of these dyes.

Electronic Supplementary Material

Download File(s)
12274_2020_2870_MOESM1_ESM.pdf (6.3 MB)

References

[1]
H. C. Zhou,; J. R. Long,; O. M. Yaghi, Introduction to metal-organic frameworks. Chem. Rev. 2012, 112, 673-674.
[2]
C. V. McGuire,; R. S. Forgan, The surface chemistry of metal-organic frameworks. Chem. Commun. 2015, 51, 5199-217.
[3]
O. M. Yaghi,; M. O’Keeffe,; N. W. Ockwig,; H. K. Chae,; M. Eddaoudi,; J. Kim, Reticular synthesis and the design of new materials. Nature 2003, 423, 705-714.
[4]
H. Furukawa,; K. E. Cordova,; M. O’Keeffe,; O. M. Yaghi, The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.
[5]
H. Furukawa,; N. Ko,; Y. B. Go,; N. Aratani,; S. B. Choi,; E. Choi,; A. Ö. Yazaydin,; R. Q. Snurr,; M. O’Keeffe,; J. Kim, et al. Ultrahigh porosity in metal-organic frameworks. Science 2010, 329, 424-428.
[6]
S. Rojas,; F. J. Carmona,; C. R. Maldonado,; P. Horcajada,; T. Hidalgo,; C. Serre,; J. A. R. Navarro,; E. Barea, Nanoscaled zinc pyrazolate metal-organic frameworks as drug-delivery systems. Inorg. Chem. 2016, 55, 2650-2663.
[7]
D. Zhao,; Y. J. Cui,; Y. Yang,; G. D. Qian, Sensing-functional luminescent metal-organic frameworks. CrystEngComm 2016, 18, 3746-3759.
[8]
X. C. Yang,; Q. Xu, Bimetallic metal-organic frameworks for gas storage and separation. Ryst. Growth Des. 2017, 17, 1450-1455.
[9]
G. Xiong,; B. Yu,; J. Dong,; Y. Shi,; B. Zhao,; L. N. He, Cluster-based MOFs with accelerated chemical conversion of CO2 through C-C bond formation. Chem. Commun. 2017, 53, 6013-6016.
[10]
N. Stock,; S. Biswas, Synthesis of metal-organic frameworks(MOFs): Routes to various MOF topologies, morphologies, and composites. Chem. Rev. 2012, 112, 933-969.
[11]
L. E. Kreno,; K. Leong,; O. K. Farha,; M. Allendorf,; R. P. Van Duyne,; J. T. Hupp, Metal-organic framework materials as chemical sensors. Chem. Rev. 2012, 112, 1105-1125.
[12]
Y. Belmabkhout,; V. Guillerm,; M. Eddaoudi, Low concentration CO2 capture using physical adsorbents: Are metal-organic frameworks becoming the new benchmark materials? Chem. Eng. J. 2016, 296, 386-397.
[13]
R. Issa,; M. Hmadeh,; M. Al-Ghoul, Control of particle size and morphology of MOF-199 crystals via a reaction-diffusion framework. Defect Diffus. Forum 2017, 380, 39-47.
[14]
H. L. Zhu,; D. X. Liu, The synthetic strategies of metal-organic framework membranes, films and 2D MOFs and their applications in devices. J. Mater. Chem. A 2019, 7, 21004-21035.
[15]
D. R. Sun,; F. X. Sun,; X. Y. Deng,; Z. H. Li, Mixed-metal strategy on metal-organic frameworks (MOFs) for functionalities expansion: Co substitution induces aerobic oxidation of cyclohexene over inactive Ni-MOF-74. Inorg. Chem. 2015, 54, 8639-8643.
[16]
J. A. Villajos,; G. Orcajo,; C. Martos,; J. Á. Botas,; J. Villacañas,; G. Calleja, Co/Ni mixed-metal sited MOF-74 material as hydrogen adsorbent. Int. J. Hydrogen Energy 2015, 40, 5346-5352.
[17]
A. Naeem,; V. P. Ting,; U. Hintermair,; M. Tian,; R. Telford,; S. Halim,; H. Nowell,; M. Hołyńska,; S. J. Teat,; I. J. Scowen, et al. Mixed-linker approach in designing porous zirconium-based metal-organic frameworks with high hydrogen storage capacity. Chem. Commun. 2016, 52, 7826-7829.
[18]
R. Haldar,; T. K. Maji, Metal-organic frameworks (MOFs) based on mixed linker systems: Structural diversities towards functional materials. CrystEngComm 2013, 15, 9276-9295.
[19]
H. X. Deng,; C. J. Doonan,; H. Furukawa,; R. B. Ferreira,; J. Towne,; C. B. Knobler,; B. Wang,; O. M. Yaghi, Multiple functional groups of varying ratios in metal-organic frameworks. Science 2010, 327, 846-850.
[20]
X. Q. Kong,; H. X. Deng,; F. Y. Yan,; J. Kim,; J. A. Swisher,; B. Smit,; O. M. Yaghi,; J. A. Reimer, Mapping of functional groups in metal-organic frameworks. Science 2013, 341, 882-885.
[21]
J. S. Qin,; S. Yuan,; Q. Wang,; A. Alsalme,; H. C. Zhou, Mixed-linker strategy for the construction of multifunctional metal-organic frameworks. J. Mater. Chem. A 2017, 5, 4280-4291.
[22]
T. M. Osborn Popp,; O. M. Yaghi, Sequence-dependent materials. Acc. Chem. Res. 2017, 50, 532-534.
[23]
Y. Lee,; S. Kim,; J. K. Kang,; S. M. Cohen, Photocatalytic CO2 reduction by a mixed metal (Zr/Ti), mixed ligand metal-organic framework under visible light irradiation. Chem. Commun. 2015, 51, 5735-5738.
[24]
C. Z. Duan,; F. E. Li,; H. Zhang,; J. Q. Li,; X. J. Wang,; H. X. Xi, Template synthesis of hierarchical porous metal-organic frameworks with tunable porosity. RSC Adv. 2017, 7, 52245-52251.
[25]
Z. N. Shi,; L. Li,; Y. X. Xiao,; Y. X. Wang,; K. K. Sun,; H. X. Wang,; L. Liu, Synthesis of mixed-ligand Cu-MOFs and their adsorption of malachite green. RSC Adv. 2017, 7, 30904-30910.
[26]
G. W. Peterson,; K. Au,; T. M. Tovar,; T. H. Epps, Multivariate CuBTC metal-organic framework with enhanced selectivity, stability, compatibility, and processability. Chem. Mater. 2019, 31, 8459-8465.
[27]
S. Yuan,; J. S. Qin,; J. L. Li,; L. Huang,; L. Feng,; Y. Fang,; C. Lollar,; J. D. Pang,; L. L. Zhang,; D. Sun, et al. Retrosynthesis of multi-component metal-organic frameworks. Nat. Commun. 2018, 9, 808.
[28]
H. Furukawa,; U. Müller,; O. M. Yaghi, “Heterogeneity within order” in metal-organic frameworks. Angew. Chem., Int. Ed. 2015, 54, 3417-3430.
[29]
A. D. Burrows, Mixed-component metal-organic frameworks (MC-MOFs): Enhancing functionality through solid solution formation and surface modifications. CrystEngComm 2011, 13, 3623-3642.
[30]
L. J. Wang,; H. X. Deng,; H. Furukawa,; F. Gándara,; K. E. Cordova,; D. Peri,; O. M. Yaghi, Synthesis and characterization of metal-organic framework-74 containing 2, 4, 6, 8, and 10 different metals. Inorg. Chem. 2014, 53, 5881-5883.
[31]
G. Ayoub,; B. Karadeniz,; A. J. Howarth,; O. K. Farha,; I. Đilović,; L. S. Germann,; R. E. Dinnebier,; K. Užarević,; T. Friscic, Rational synthesis of mixed-metal microporous metal-organic frameworks with controlled composition using mechanochemistry. Chem. Mater. 2019, 31, 5494-5501.
[32]
O. Karagiaridi,; W. Bury,; J. E. Mondloch,; J. T. Hupp,; O. K. Farha, Solvent-assisted linker exchange: An alternative to the de novo synthesis of unattainable metal-organic frameworks. Angew. Chem., Int. Ed. 2014, 53, 4530-4540.
[33]
W. Q. Xi,; Y. Liu,; Q. C. Xia,; Z. J. Li,; Y. Cui, Direct and post-synthesis incorporation of chiral metallosalen catalysts into metal-organic frameworks for asymmetric organic transformations. Chem.—Eur. J. 2015, 21, 12581-12585.
[34]
S. Yuan,; W. G. Lu,; Y. P. Chen,; Q. Zhang,; T. F. Liu,; D. W. Feng,; X. Wang,; J. S. Qin,; H. C. Zhou, Sequential linker installation: Precise placement of functional groups in multivariate metal-organic frameworks. J. Am. Chem. Soc. 2015, 137, 3177-3180.
[35]
C. X. Chen,; Z. W. Wei,; J. J. Jiang,; Y. Z. Fan,; S. P. Zheng,; C. C. Cao,; Y. H. Li,; D. Fenske,; C. Y. Su, Precise modulation of the breathing behavior and pore surface in Zr-MOFs by reversible post-synthetic variable-spacer installation to fine-tune the expansion magnitude and sorption properties. Angew. Chem., Int. Ed. 2016, 55, 9932-9936.
[36]
T. Li,; J. E. Sullivan,; N. L. Rosi, Design and preparation of a core-shell metal-organic framework for selective CO2 capture. J. Am. Chem. Soc. 2013, 135, 9984-9987.
[37]
L. C. He,; Y. Liu,; J. Z. Liu,; Y. S. Xiong,; J. Z. Zheng,; Y. L. Liu,; Z. Y. Tang, Core-shell noble-metal@metal-organic-framework nanoparticles with highly selective sensing property. Angew. Chem., Int. Ed. 2013, 125, 3829-3833.
[38]
D. J. Tranchemontagne,; J. R. Hunt,; O. M. Yaghi, Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron 2008, 64, 8553-8557.
[39]
M. Al-Ghoul,; R. Issa,; M. Hmadeh, Synthesis, size and structural evolution of metal-organic framework-199 via a reaction-diffusion process at room temperature. CrystEngComm 2017, 19, 608-612.
[40]
J. L. Zhuang,; D. Ceglarek,; S. Pethuraj,; A. Terfort, Rapid room-temperature synthesis of metal-organic framework HKUST-1 crystals in bulk and as oriented and patterned thin films. Adv. Funct. Mater. 2011, 21, 1442-1447.
[41]
G. A. Al Akhrass,; M. Ammar,; H. El-Rassy,; M. Al-Ghoul, Self-assembled lanthanum hydroxide microspheres within a reaction-diffusion framework: Synthesis, characterization, control and application. RSC Adv. 2016, 6, 3433-3439.
[42]
D. Saliba,; A. Ezzeddine,; A. H. Emwas,; N. M. Khashab,; M. Al-Ghoul, Dynamics and mechanism of intercalation/de-intercalation of rhodamine B during the polymorphic transformation of the CdAl layered double hydroxide to the brucite-like cadmium hydroxide. Ryst. Growth Des. 2016, 16, 4327-4335.
[43]
D. Saliba,; A. Ezzeddine,; R. Sougrat,; N. M. Khashab,; M. Hmadeh,; M. Al-Ghoul, Cadmium-aluminum layered double hydroxide microspheres for photocatalytic CO2 reduction. ChemSusChem 2016, 9, 800-805.
[44]
J. Rahbani,; M. Ammar,; M. Al-Ghoul, Reaction-diffusion framework: The mechanism of the polymorphic transition of α- to β-cobalt hydroxide. J. Phys. Chem. A 2013, 117, 1685-1691.
[45]
D. Saliba,; M. Al-Ghoul, Stability and particle size control of self-assembled cadmium-aluminum layered double hydroxide. CrystEngComm 2016, 18, 8445-8453.
[46]
D. Saliba,; M. Ammar,; M. Rammal,; M. Al-Ghoul,; M. Hmadeh, Crystal growth of ZIF-8, ZIF-67, and their mixed-metal derivatives. J. Am. Chem. Soc. 2018, 140, 1812-1823.
[47]
P. Redfield, Fluid technologies: The Bush Pump, the LifeStraw® and microworlds of humanitarian design. Soc. Stud. Sci. 2016, 46, 159-183.
[48]
M. Eddaoudi,; J. Kim,; J. Wachter,; H. K. Chae,; M. O'keeffe,; O. M. Yaghi, Porous metal-organic polyhedra: 25 Å cuboctahedron constructed from 12 Cu2(CO2)4 paddle-wheel building blocks. J. Am. Chem. Soc. 2001, 123, 4368-4369.
[49]
S. R. Venna,; J. B. Jasinski,; M. A. Carreon, Structural evolution of zeolitic imidazolate framework-8. J. Am. Chem. Soc. 2010, 132, 18030-18033.
[50]
Z. L. Fang,; J. P. Dürholt,; M. Kauer,; W. H. Zhang,; C. Lochenie,; B. Jee,; B. Albada,; N. Metzler-Nolte,; A. Pöppl,; B. Weber, et al. Structural complexity in metal-organic frameworks: Simultaneous modification of open metal sites and hierarchical porosity by systematic doping with defective linkers. J. Am. Chem. Soc. 2014, 136, 9627-9636.
[51]
J. Park,; Z. U. Wang,; L. B. Sun,; Y. P. Chen,; H. C. Zhou, Introduction of functionalized mesopores to metal-organic frameworks via metal-ligand-fragment coassembly. J. Am. Chem. Soc. 2012, 134, 20110-20116.
[52]
L. Xiong,; Y. Yang,; J. X. Mai,; W. L. Sun,; C. Y. Zhang,; D. P. Wei,; Q. Chen,; J. R. Ni, Adsorption behavior of methylene blue onto titanate nanotubes. Chem. Eng. J. 2010, 156, 313-320.
[53]
F. Raposo,; M. A. De La Rubia,; R. Borja, Methylene blue number as useful indicator to evaluate the adsorptive capacity of granular activated carbon in batch mode: Influence of adsorbate/adsorbent mass ratio and particle size. J. Hazard. Mater. 2009, 165, 291-299.
[54]
L. Li,; X. L. Liu,; H. Y. Geng,; B. Hu,; G. W. Song,; Z. S. Xu, A MOF/graphite oxide hybrid (MOF: HKUST-1) material for the adsorption of methylene blue from aqueous solution. J. Mater. Chem. A 2013, 1, 10292-10299.
[55]
P. P. Selvam,; S. Preethi,; P. Basakaralingam,; N. Thinakaran,; A. Sivasamy,; S. Sivanesan, Removal of rhodamine B from aqueous solution by adsorption onto sodium montmorillonite. J. Hazard. Mater. 2008, 155, 39-44.
[56]
K. Kadirvelu,; C. Karthika,; N. Vennilamani,; S. Pattabhi, Activated carbon from industrial solid waste as an adsorbent for the removal of rhodamine-B from aqueous solution: Kinetic and equilibrium studies. Chemosphere 2005, 60, 1009-1017.
[57]
H. X. Guo,; F. Lin,; J. H. Chen,; F. M. Li,; W. Weng, Metal-organic framework MIL-125(Ti) for efficient adsorptive removal of rhodamine B from aqueous solution. Appl. Org. Chem. 2015, 29, 12-19.
[58]
S. Eftekhari,; A. Habibi-Yangjeh,; S. Sohrabnezhad, Application of AlMCM-41 for competitive adsorption of methylene blue and rhodamine B: Thermodynamic and kinetic studies. J. Hazard. Mater. 2010, 178, 349-355.
[59]
S. J. Dukhin, (Ed.). Fundamentals of Interface and Colloid Science, vol. IV, Academic Press, New York-Toronto (2005). Adv. Colloid Interface Sci. 2006, 119, 69-70.
[60]
M. A. Fontecha-Cámara,; M. V. López-Ramón,; M. A. Álvarez-Merino,; C. Moreno-Castilla, Effect of surface chemistry, solution pH, and ionic strength on the removal of herbicides diuron and amitrole from water by an activated carbon fiber. Langmuir 2007, 23, 1242-1247.
[61]
G. Blanco-Brieva,; J. M. Campos-Martin,; S. M. Al-Zahrani,; J. L. G. Fierro, Removal of refractory organic sulfur compounds in fossil fuels using MOF sorbents. Global NEST J. 2010, 12, 296-304.
[62]
A. Banerjee,; R. Gokhale,; S. Bhatnagar,; J. Jog,; M. Bhardwaj,; B. Lefez,; B. Hannoyer,; S. Ogale, MOF derived porous carbon-Fe3O4 nanocomposite as a high performance, recyclable environmental superadsorbent. J. Mater. Chem. 2012, 22, 19694-19699.
Nano Research
Pages 423-431
Cite this article:
Issa R, Ibrahim FA, Al-Ghoul M, et al. Controlled growth and composition of multivariate metal-organic frameworks-199 via a reaction-diffusion process. Nano Research, 2021, 14(2): 423-431. https://doi.org/10.1007/s12274-020-2870-1
Topics:

774

Views

17

Crossref

N/A

Web of Science

19

Scopus

1

CSCD

Altmetrics

Received: 04 February 2020
Revised: 17 April 2020
Accepted: 09 May 2020
Published: 25 June 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return