AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (14.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Rationally designed synthesis of bright AgInS2/ZnS quantum dots with emission control

José X. Soares1K. David Wegner2David S. M. Ribeiro1Armindo Melo3Ines Häusler4João L. M. Santos1Ute Resch-Genger2( )
LAQV-REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, Porto, 4050-313, Portugal
Federal Institute for Materials Research and Testing (BAM), Division Biophotonics, Richard-Willstaetter-Strasse 11, 12489 Berlin, Germany
LAQV-REQUIMTE, Laboratório de Bromatologia e Hidrologia, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, Porto, 4050-313, Portugal
Technische Universität Berlin, Institut für Optik und Atomare Physik, Straße des 17. Juni 135, 10623 Berlin, Germany
Show Author Information

Graphical Abstract

Abstract

In the blossoming field of Cd-free semiconductor quantum dots (QDs), ternary I-III-VI QDs have received increasing attention due to the ease of the environmentally friendly synthesis of high-quality materials in water, their high photoluminescence (PL) quantum yields (QYs) in the red and near infrared (NIR) region, and their inherently low toxicity. Moreover, their oxygen-insensitive long PL lifetimes of up to several hundreds of nanoseconds close a gap for applications exploiting the compound-specific parameter PL lifetime. To overcome the lack of reproducible synthetic methodologies and to enable a design-based control of their PL properties, we assessed and modelled the synthesis of high-quality MPA-capped AgInS2/ZnS (AIS/ZnS) QDs. Systematically refined parameters included reaction time, temperature, Ag:In ratio, S:In ratio, Zn:In ratio, MPA:In ratio, and pH using a design-of-experiment approach. Guidance for the optimization was provided by mathematical models developed for the application-relevant PL parameters, maximum PL wavelength, QY, and PL lifetime as well as the elemental composition in terms of Ag:In:Zn ratio. With these experimental data-based models, MPA:In and Ag:In ratios and pH values were identified as the most important synthesis parameters for PL control and an insight into the connection of these parameters could be gained. Subsequently, the experimental conditions to synthetize QDs with tunable emission and high QY were predicted. The excellent agreement between the predicted and experimentally found PL features confirmed the reliability of our methodology for the rational design of high quality AIS/ZnS QDs with defined PL features. This approach can be straightforwardly extended to other ternary and quaternary QDs and to doped QDs.

Electronic Supplementary Material

Download File(s)
12274_2020_2876_MOESM1_ESM.pdf (5.4 MB)

References

[1]
Aldakov, D.; Lefrancois, A.; Reiss, P. Ternary and quaternary metal chalcogenide nanocrystals: Synthesis, properties and applications. J. Mater. Chem. C 2013, 1, 3756-3776.
[2]
Xu, G. X.; Zeng, S. W.; Zhang, B. T.; Swihart, M. T.; Yong, K. T.; Prasad, P. N. New generation cadmium-free quantum dots for biophotonics and nanomedicine. Chem. Rev. 2016, 116, 12234-12327.
[3]
Jing, L. H.; Kershaw, S. V.; Li, Y. L.; Huang, X. D.; Li, Y. Y.; Rogach, A. L.; Gao, M. Y. Aqueous based semiconductor nanocrystals. Chem. Rev. 2016, 116, 10623-10730.
[4]
Tamang, S.; Lincheneau, C.; Hermans, Y.; Jeong, S.; Reiss, P. Chemistry of InP nanocrystal syntheses. Chem. Mater. 2016, 28, 2491-2506.
[5]
Li, Y.; Pu, C. D.; Peng, X. G. Surface activation of colloidal indium phosphide nanocrystals. Nano Res. 2017, 10, 941-958.
[6]
Kolny-Olesiak, J.; Weller, H. Synthesis and application of colloidal CuInS2 semiconductor nanocrystals. ACS Appl. Mater. Interfaces 2013, 5, 12221-12237.
[7]
Li, X.; Tu, D. T.; Yu, S. H.; Song, X. R.; Lian, W.; Wei, J. J.; Shang, X. Y.; Li, R. F.; Chen, X. Y. Highly efficient luminescent I-III-VI semiconductor nanoprobes based on template-synthesized CuInS2 nanocrystals. Nano Res. 2019, 12, 1804-1809.
[8]
Nakamura, H.; Kato, W.; Uehara, M.; Nose, K.; Omata, T.; Otsuka-Yao-Matsuo, S.; Miyazaki, M.; Maeda, H. Tunable photoluminescence wavelength of chalcopyrite CuInS2-based semiconductor nanocrystals synthesized in a colloidal system. Chem. Mater. 2006, 18, 3330-3335.
[9]
Xia, C. H.; Meeldijk, J. D.; Gerritsen, H. C.; Donega, C. d. M. Highly luminescent water-dispersible nir-emitting wurtzite CuInS2/ZnS core/shell colloidal quantum dots. Chem. Mater. 2017, 29, 4940-4951.
[10]
Ko, M.; Yoon, H. C.; Yoo, H.; Oh, J. H.; Yang, H.; Do, Y. R. Highly efficient green Zn-Ag-In-S/Zn-In-S/ZnS QDs by a strong exothermic reaction for down-converted green and tripackage white LEDs. Adv. Funct. Mater. 2017, 27, 1602638.
[11]
Raevskaya, A.; Lesnyak, V.; Haubold, D.; Dzhagan, V.; Stroyuk, O.; Gaponik, N.; Zahn, D. R. T.; Eychmüller, A. A fine size selection of brightly luminescent water-soluble Ag-In-S and Ag-In-S/ZnS quantum dots. J. Phys. Chem. C 2017, 121, 9032-9042.
[12]
van der Stam, W.; Berends, A. C.; Rabouw, F. T.; Willhammar, T.; Ke, X. X.; Meeldijk, J. D.; Bals, S.; Donega, C. d. M. Luminescent CuInS2 quantum dots by partial cation exchange in Cu2-xS nanocrystals. Chem. Mater. 2015, 27, 621-628.
[13]
Han, N. S.; Yoon, H. C.; Jeong, S.; Oh, J. H.; Park, S. M.; Do, Y. R.; Song, J. K. Origin of highly efficient photoluminescence in AgIn5S8 nanoparticles. Nanoscale 2017, 9, 10285-10291.
[14]
Stroyuk, O.; Weigert, F.; Raevskaya, A.; Spranger, F.; Würth, C.; Resch-Genger, U.; Gaponik, N.; Zahn, D. R. T. Inherently broadband photoluminescence in Ag-In-S/ZnS quantum dots observed in ensemble and single-particle studies. J. Phys. Chem. C 2019, 123, 2632-2641.
[15]
Dai, M. L.; Ogawa, S.; Kameyama, T.; Okazaki, K. I.; Kudo, A.; Kuwabata, S.; Tsuboi, Y.; Torimoto, T. Tunable photoluminescence from the visible to near-infrared wavelength region of non-stoichiometric AgInS2 nanoparticles. J. Mater. Chem. 2012, 22, 12851-12858.
[16]
Tsuji, I.; Kato, H.; Kobayashi, H.; Kudo, A. Photocatalytic H2 evolution reaction from aqueous solutions over band structure-controlled (AgIn)xZn2(1-x)S2 solid solution photocatalysts with visible-light response and their surface nanostructures. J. Am. Chem. Soc. 2004, 126, 13406-13413.
[17]
Stroyuk, O.; Raevskaya, A.; Spranger, F.; Selyshchev, O.; Dzhagan, V.; Schulze, S.; Zahn, D. R. T.; Eychmüller, A. Origin and dynamics of highly efficient broadband photoluminescence of aqueous glutathione-capped size-selected Ag-In-S quantum dots. J. Phys. Chem. C 2018, 122, 13648-13658.
[18]
Zang, H. D.; Li, H. B.; Makarov, N. S.; Velizhanin, K. A.; Wu, K. F.; Park, Y. S.; Klimov, V. I. Thick-shell CuInS2/ZnS quantum dots with suppressed “blinking” and narrow single-particle emission line widths. Nano Lett. 2017, 17, 1787-1795.
[19]
Martynenko, I. V.; Baimuratov, A. S.; Weigert, F.; Soares, J. X.; Dhamo, L.; Nickl, P.; Doerfel, I.; Pauli, J.; Rukhlenko, I. D.; Baranov, A. V. et al. Photoluminescence of Ag-In-S/ZnS quantum dots: Excitation energy dependence and low-energy electronic structure. Nano Res. 2019, 12, 1595-1603.
[20]
Peng, L. C.; Li, D. Z.; Zhang, Z. L.; Huang, K. K.; Zhang, Y.; Shi, Z.; Xie, R. G.; Yang, W. S. Large-scale synthesis of single-source, thermally stable, and dual-emissive Mn-doped Zn-Cu-In-S nanocrystals for bright white light-emitting diodes. Nano Res. 2015, 8, 3316-3331.
[21]
Jara, D. H.; Yoon, S. J.; Stamplecoskie, K. G.; Kamat, P. V. Size-dependent photovoltaic performance of CuInS2 quantum dot-sensitized solar cells. Chem. Mater. 2014, 26, 7221-7228.
[22]
Stroyuk, O.; Raevskaya, A.; Gaponik, N. Solar light harvesting with multinary metal chalcogenide nanocrystals. Chem. Soc. Rev. 2018, 47, 5354-5422.
[23]
Regulacio, M. D.; Han, M. Y. Multinary I-III-VI2 and I2-II-IV-VI4 semiconductor nanostructures for photocatalytic applications. Acc. Chem. Res. 2016, 49, 511-519.
[24]
Liu, X. Y.; Zhang, G. Z.; Chen, H.; Li, H. W.; Jiang, J.; Long, Y. T.; Ning, Z. J. Efficient defect-controlled photocatalytic hydrogen generation based on near-infrared Cu-In-Zn-S quantum dots. Nano Res. 2018, 11, 1379-1388.
[25]
Li, L.; Daou, T. J.; Texier, I.; Chi, T. H. K.; Liem, N. Q.; Reiss, P. Highly luminescent CuInS2/ZnS core/shell nanocrystals: Cadmium-free quantum dots for in vivo imaging. Chem. Mater. 2009, 21, 2422-2429.
[26]
Deng, D. W.; Chen, Y. Q.; Cao, J.; Tian, J. M.; Qian, Z. Y.; Achilefu, S.; Gu, Y. Q. High-quality CuInS2/ZnS quantum dots for in vitro and in vivo bioimaging. Chem. Mater. 2012, 24, 3029-3037.
[27]
Ogihara, Y.; Yukawa, H.; Kameyama, T.; Nishi, H.; Onoshima, D.; Ishikawa, T.; Torimoto, T.; Baba, Y. Labeling and in vivo visualization of transplanted adipose tissue-derived stem cells with safe cadmium-free aqueous ZnS coating of ZnS-AgInS2 nanoparticles. Sci. Rep. 2017, 7, 40047.
[28]
Du, W. M.; Qian, X. F.; Yin, J.; Gong, Q. Shape- and phase-controlled synthesis of monodisperse, single-crystalline ternary chalcogenide colloids through a convenient solution synthesis strategy. Chem. -Eur. J. 2007, 13, 8840-8846.
[29]
Berends, A. C.; Mangnus, M. J. J.; Xia, C. H.; Rabouw, F. T.; Donega, C. d. M. Optoelectronic properties of ternary I-III-VI2 semiconductor nanocrystals: Bright prospects with elusive origins. J. Phys. Chem. Lett. 2019, 10, 1600-1616.
[30]
Regulacio, M. D.; Win, K. Y.; Lo, S. L.; Zhang, S. Y.; Zhang, X. H.; Wang, S.; Han, M. Y.; Zheng, Y. G. Aqueous synthesis of highly luminescent AgInS2-ZnS quantum dots and their biological applications. Nanoscale 2013, 5, 2322-2327.
[31]
Luo, Z. S.; Zhang, H.; Huang, J.; Zhong, X. H. One-step synthesis of water-soluble AgInS2 and ZnS-AgInS2 composite nanocrystals and their photocatalytic activities. J. Colloid Interface Sci. 2012, 377, 27-33.
[32]
Song, J. L. Q.; Ma, C.; Zhang, W. Z.; Li, X. D.; Zhang, W. T.; Wu, R. B.; Cheng, X. C.; Ali, A.; Yang, M. Y.; Zhu, L. X. et al. Bandgap and structure engineering via cation exchange: From binary Ag2S to ternary AgInS2, quaternary AgZnInS alloy and AgZnInS/ZnS core/shell fluorescent nanocrystals for bioimaging. ACS Appl. Mater. Interfaces 2016, 8, 24826-24836.
[33]
Doh, H.; Hwang, S.; Kim, S. Size-tunable synthesis of nearly monodisperse Ag2S nanoparticles and size-dependent fate of the crystal structures upon cation exchange to AgInS2 nanoparticles. Chem. Mater. 2016, 28, 8123-8127.
[34]
Mao, B. D.; Chuang, C. H.; Lu, F.; Sang, L. X.; Zhu, J. J.; Burda, C. Study of the partial Ag-to-Zn cation exchange in AgInS2/ZnS nanocrystals. J. Phys. Chem. C 2013, 117, 648-656.
[35]
Berends, A. C.; van der Stam, W.; Hofmann, J. P.; Bladt, E.; Meeldijk, J. D.; Bals, S.; Donega, C. d. M. Interplay between surface chemistry, precursor reactivity, and temperature determines outcome of ZnS shelling reactions on CuInS2 nanocrystals. Chem. Mater. 2018, 30, 2400-2413.
[36]
Fernando, Q.; Freiser, H. Chelating properties of β-mercaptopropionic acid. J. Am. Chem. Soc. 1958, 80, 4928-4931.
[37]
Sarin, R.; Munshi, K. N. Physico-chemical investigation on the complexes of indium(III) with mercapto-, hydroxy-, and amino-substituted propionic acid. Aust. J. Chem. 1972, 25, 929-939.
[38]
Kojima, N.; Sugiura, Y.; Tanaka, H. Polynuclear and mononuclear complex formation between indium (III) and sulfhydryl-containing bidentate ligands. Chem. Pharm. Bull. 1978, 26, 579-584.
[39]
He, Y.; Sai, L.M.; Lu, H. T.; Hu, M.; Lai, W. Y.; Fan, Q. L.; Wang, L. H.; Huang, W. Microwave-assisted synthesis of water-dispersed CdTe nanocrystals with high luminescent efficiency and narrow size distribution. Chem. Mater. 2007, 19, 359-365.
[40]
Duan, J. L.; Song, L. X.; Zhan, J. H. One-pot synthesis of highly luminescent CdTe quantum dots by microwave irradiation reduction and their Hg2+-sensitive properties. Nano Res. 2009, 2, 61-68.
[41]
Hayakawa, Y.; Nonoguchi, Y.; Wu, H. P.; Diau, E. W. G.; Nakashima, T.; Kawai, T. Rapid preparation of highly luminescent CdTe nanocrystals in an ionic liquid via a microwave-assisted process. J. Mater. Chem. 2011, 21, 8849-8853.
[42]
He, Y.; Lu, H. T.; Sai, L. M.; Lai, W. Y.; Fan, Q. L.; Wang, L. H.; Huang, W. Synthesis of CdTe nanocrystals through program process of microwave irradiation. J. Phys. Chem. B 2006, 110, 13352-13356.
[43]
Li, L.; Qian, H. F.; Ren, J. C. Rapid synthesis of highly luminescent CdTe nanocrystals in the aqueous phase by microwave irradiation with controllable temperature. Chem. Commun. 2005, 36, 528-530.
[44]
Mousavi-Kamazani, M.; Salavati-Niasari, M. A simple microwave approach for synthesis and characterization of Ag2S-AgInS2 nanocomposites. Compos. Part B Eng. 2014, 56, 490-496.
[45]
Tadjarodi, A.; Cheshmekhavar, A. H.; Imani, M. Preparation of AgInS2 nanoparticles by a facile microwave heating technique; Study of effective parameters, optical and photovoltaic characteristics. Appl. Surf. Sci. 2012, 263, 449-456.
[46]
Xiong, W. W.; Yang, G. H.; Wu, X. C.; Zhu, J. J. Microwave-assisted synthesis of highly luminescent AgInS2/ZnS nanocrystals for dynamic intracellular Cu(II) detection. J. Mater. Chem. B 2013, 1, 4160-4165.
[47]
Zhang, W. J.; Li, D. Z.; Chen, Z. X.; Sun, M.; Li, W. J.; Lin, Q.; Fu, X. Z. Microwave hydrothermal synthesis of AgInS2 with visible light photocatalytic activity. Mater. Res. Bull. 2011, 46, 975-982.
[48]
Mir, I. A.; Radhakrishanan, V. S.; Rawat, K.; Prasad, T.; Bohidar, H. B. Bandgap tunable AgInS based quantum dots for high contrast cell imaging with enhanced photodynamic and antifungal applications. Sci. Rep. 2018, 8, 9322.
[49]
Raveendran, S.; Sen, A.; Maekawa, T.; Kumar, D. S. Ultra-fast microwave aided synthesis of gold nanocages and structural maneuver studies. Nano Res. 2017, 10, 1078-1091.
[50]
Zhang, J.; Yuan, Y.; Wang, Y.; Sun, F. F.; Liang, G. L.; Jiang, Z.; Yu, S. H. Microwave-assisted synthesis of photoluminescent glutathione-capped Au/Ag nanoclusters: A unique sensor-on-a-nanoparticle for metal ions, anions, and small molecules. Nano Res. 2015, 8, 2329-2339.
[51]
Horikoshi, S.; Serpone, N. Considerations of microwave heating. In Microwaves in Nanoparticle Synthesis: Fundamentals and Applications. Horikoshi, S., Serpone, N., Eds.; Wiley: Weinheim, 2013; pp 39-54.
[52]
Denmark, S. E.; Butler, C. R. Vinylation of aromatic halides using inexpensive organosilicon reagents. Illustration of design of experiment protocols. J. Am. Chem. Soc. 2008, 130, 3690-3704.
[53]
Ribeiro, D. S. M.; de Souza, G. C. S.; Melo, A.; Soares, J. X.; Rodrigues, S. S. M.; Araújo, A. N.; Montenegro, M. C. B. S. M.; Santos, J. L. M. Synthesis of distinctly thiol-capped CdTe quantum dots under microwave heating: Multivariate optimization and characterization. J. Mater. Sci. 2017, 52, 3208-3224.
[54]
Braham, E. J.; Cho, J.; Forlano, K. M.; Watson, D. F.; Arròyave, R.; Banerjee, S. Machine learning-directed navigation of synthetic design space: A statistical learning approach to controlling the synthesis of perovskite halide nanoplatelets in the quantum-confined regime. Chem. Mater. 2019, 31, 3281-3292.
[55]
Song, J. H.; Xie, H. Z.; Wu, W. Z.; Joseph, V. R.; Wu, C. F. J.; Wang, Z. L. Robust optimization of the output voltage of nanogenerators by statistical design of experiments. Nano Res. 2010, 3, 613-619.
[56]
Protière, M.; Nerambourg, N.; Renard, O.; Reiss, P. Rational design of the gram-scale synthesis of nearly monodisperse semiconductor nanocrystals. Nanoscale Res. Lett. 2011, 6, 472.
[57]
Hoffmann, K.; Behnke, T.; Drescher, D.; Kneipp, J.; Resch-Genger, U. Near-infrared-emitting nanoparticles for lifetime-based multiplexed analysis and imaging of living cells. ACS Nano 2013, 7, 6674-6684.
[58]
Liu, S. Y.; Zhang, H.; Qiao, Y.; Su, X. G. One-pot synthesis of ternary CuInS2 quantum dots with near-infrared fluorescence in aqueous solution. RSC Adv. 2012, 2, 819-825.
[59]
Deng, D. W.; Qu, L. Z.; Cheng, Z. Q.; Achilefu, S.; Gu, Y. Q. Highly luminescent water-soluble quaternary Zn-Ag-In-S quantum dots and their unique precursor S/In ratio-dependent spectral shifts. J. Lumin. 2014, 146, 364-370.
[60]
Xie, R. G.; Rutherford, M.; Peng, X. G. Formation of high-quality I-III-VI semiconductor nanocrystals by tuning relative reactivity of cationic precursors. J. Am. Chem. Soc. 2009, 131, 5691-5697.
[61]
Kadlag, K. P.; Patil, P.; Rao, M. J.; Datta, S.; Nag, A. Luminescence and solar cell from ligand-free colloidal AgInS2 nanocrystals. Crystengcomm 2014, 16, 3605-3612.
[62]
Cichy, B.; Olejniczak, A.; Bezkrovnyi, O.; Kepinski, L.; Strek, W. Defects mediated charge disturbance in quantum-confined AgxS/AgInS2 random alloys—Toward slowly decaying quantum dot emitters. J. Alloys Compd. 2019, 798, 290-299.
[63]
Yang, J.; Muckel, F.; Baek, W.; Fainblat, R.; Chang, H.; Bacher, G.; Hyeon, T. Chemical synthesis, doping, and transformation of magic-sized semiconductor alloy nanoclusters. J. Am. Chem. Soc. 2017, 139, 6761-6770.
[64]
Bajwa, P.; Gao, F.; Nguyen, A.; Omogo, B.; Heyes, C. D. Influence of the inner-shell architecture on quantum yield and blinking dynamics in core/multishell quantum dots. Chemphyschem 2016, 17, 731-740.
[65]
Chen, O.; Zhao, J.; Chauhan, V. P.; Cui, J.; Wong, C.; Harris, D. K.; Wei, H.; Han, H. S.; Fukumura, D.; Jain, R. K. et al. Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat. Mater. 2013, 12, 445-451.
[66]
Greytak, A. B.; Allen, P. M.; Liu, W. H.; Zhao, J.; Young, E. R.; Popović, Z.; Walker, B. J.; Nocera, D. G.; Bawendi, M. G. Alternating layer addition approach to CdSe/CdS core/shell quantum dots with near-unity quantum yield and high on-time fractions. Chem. Sci. 2012, 3, 2028-2034.
[67]
Vela, J.; Htoon, H.; Chen, Y. F.; Park, Y. S.; Ghosh, Y.; Goodwin, P. M.; Werner, J. H.; Wells, N. P.; Casson, J. L.; Hollingsworth, J. A. Effect of shell thickness and composition on blinking suppression and the blinking mechanism in “giant” CdSe/CdS nanocrystal quantum dots. J. Biophotonics 2010, 3, 706-717.
[68]
van der Stam, W.; Berends, A. C.; Donega, C. d. M. Prospects of colloidal copper chalcogenide nanocrystals. Chemphyschem 2016, 17, 559-581.
[69]
Donega, C. d. M.; Koole, R. Size dependence of the spontaneous emission rate and absorption cross section of CdSe and CdTe quantum dots. J. Phys. Chem. C 2009, 113, 6511-6520.
[70]
Fisher, B. R.; Eisler, H. J.; Stott, N. E.; Bawendi, M. G. Emission intensity dependence and single-exponential behavior in single colloidal quantum dot fluorescence lifetimes. J. Phys. Chem. B 2004, 108, 143-148.
[71]
van Driel, A. F.; Allan, G.; Delerue, C.; Lodahl, P.; Vos, W. L.; Vanmaekelbergh, D. Frequency-dependent spontaneous emission rate from CdSe and CdTe nanocrystals: Influence of dark states. Phys. Rev. Lett. 2005, 95, 236804.
[72]
Sarin, R.; Munshi, K. N. Stability constants and thermodynamic functions of indium(III) complexes with some organic acids from potentiometric data. J. lnorg. Nucl. Chem. 1973, 35, 201-207.
[73]
Tarley, C. R. T.; Silveira, G.; dos Santos, W. N. L.; Matos, G. D.; da Silva, E. G. P.; Bezerra, M. A.; Miró, M.; Ferreira, S. L. C. Chemometric tools in electroanalytical chemistry: Methods for optimization based on factorial design and response surface methodology. Microchem. J. 2009, 92, 58-67.
[74]
Keskin Gündoğdu, T.; Deniz, İ.; Çalışkan, G.; Şahin, E. S.; Azbar, N. Experimental design methods for bioengineering applications. Crit. Rev. Biotechnol. 2016, 36, 368-388.
[75]
Khuri, A. I.; Mukhopadhyay, S. Response surface methodology. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 128-149.
[76]
Lundstedt, T.; Seifert, E.; Abramo, L.; Thelin, B.; Nyström, Å.; Pettersen, J.; Bergman, R. Experimental design and optimization. Chemom. Intell. Lab. Syst. 1998, 42, 3-40.
[77]
Onsekizoglu, P.; Bahceci, K. S.; Acar, J. The use of factorial design for modeling membrane distillation. J. Membr. Sci. 2010, 349, 225-230.
[78]
Liu, Y. F.; Tang, X. S.; Deng, M.; Zhu, T.; Bai, Y. Z.; Qu, D. R.; Huang, X. B.; Qiu, F. One-step aqueous synthesis of highly luminescent hydrophilic AgInZnS quantum dots. J. Lumin. 2018, 202, 71-76.
[79]
Bujak, P.; Wróbel, Z.; Penkala, M.; Kotwica, K.; Kmita, A.; Gajewska, M.; Ostrowski, A.; Kowalik, P.; Pron, A. Highly luminescent Ag-In-Zn-S quaternary nanocrystals: Growth mechanism and surface chemistry elucidation. Inorg. Chem. 2019, 58, 1358-1370.
[80]
Sharma, D. K.; Hirata, S.; Bujak, L.; Biju, V.; Kameyama, T.; Kishi, M.; Torimoto, T.; Vacha, M. Influence of Zn on the photoluminescence of colloidal (AgIn)xZn2(1-x)S2 nanocrystals. Phys. Chem. Chem. Phys. 2017, 19, 3963-3969.
[81]
Yarema, O.; Yarema, M.; Wood, V. Tuning the composition of multicomponent semiconductor nanocrystals: The case of I-III-VI materials. Chem. Mater. 2018, 30, 1446-1461.
Nano Research
Pages 2438-2450
Cite this article:
Soares JX, Wegner KD, Ribeiro DSM, et al. Rationally designed synthesis of bright AgInS2/ZnS quantum dots with emission control. Nano Research, 2020, 13(9): 2438-2450. https://doi.org/10.1007/s12274-020-2876-8
Topics:

758

Views

27

Downloads

40

Crossref

N/A

Web of Science

41

Scopus

2

CSCD

Altmetrics

Received: 26 August 2019
Revised: 11 May 2020
Accepted: 13 May 2020
Published: 19 June 2020
© The Author(s) 2020

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return