AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Recent progress for hydrogen production by photocatalytic natural or simulated seawater splitting

Jining Zhang1,2Wenping Hu2Shuang Cao1( )Lingyu Piao1,3( )
CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China
School of Science, Tianjin University, Tianjin 300072, China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, China
Show Author Information

Graphical Abstract

Abstract

Solar energy is an inexhaustible renewable energy source. Among the various methods for solar energy conversion, photocatalytic hydrogen (H2) production is considered as one of the most promising ways. Since Fujishima pioneered this field in 1972, photocatalytic water splitting to produce H2 has received widespread attention. Up to now, abundant semiconductor materials have been explored as photocatalysts for pure water splitting to produce H2. However, photocatalytic seawater splitting is more in line with the concept of sustainable development, which can greatly alleviate the problem of limited freshwater resource. At present, only few studies have focused on the process of H2 production by photocatalytic seawater splitting due to the complex composition of seawater and lack of suitable photocatalysts. In this review, we outline the most recent advances in photocatalytic seawater splitting. In particular, we introduce the H2 production photocatalysts, underlying mechanism of ions in seawater on photocatalytic seawater splitting, current challenges and future potential advances for this exciting field.

References

[1]
Ahmad, H.; Kamarudin, S. K.; Minggu, L. J.; Kassim, M. Hydrogen from photo-catalytic water splitting process: A review. Renew. Sustain. Energy Rev. 2015, 43, 599-610.
[2]
Dubey, P. K.; Tripathi, P.; Tiwari, R. S.; Sinha, A. S. K.; Srivastava, O. N. Synthesis of reduced graphene oxide-TiO2 nanoparticle composite systems and its application in hydrogen production. Int. J. Hydrogen Energy 2014, 39, 16282-16292.
[3]
Moriya, Y.; Takata, T.; Domen, K. Recent progress in the development of (oxy) nitride photocatalysts for water splitting under visible-light irradiation. Coord. Chem. Rev. 2013, 257, 1957-1969.
[4]
Osterloh, F. E. Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem. Soc. Rev. 2013, 42, 2294-2320.
[5]
Xing, J.; Fang, W. Q.; Zhao, H. J.; Yang, H. G. Inorganic photocatalysts for overall water splitting. Chem. —Asian J. 2012, 7, 642-657.
[6]
Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 2010, 110, 6503-6570.
[7]
Maeda, K.; Domen, K. Photocatalytic water splitting: Recent progress and future challenges. J. Phys. Chem. Lett. 2010, 1, 2655-2661.
[8]
Maeda, K.; Domen, K. New non-oxide photocatalysts designed for overall water splitting under visible light. J. Phys. Chem. C 2007, 111, 7851-7861.
[9]
Lewis, N. S. Toward cost-effective solar energy use. Science 2007, 315, 798-801.
[10]
Cai, J. S.; Shen, J. L.; Zhang, X. N.; Ng, Y. H.; Hang, J. Y.; Guo, W. X.; Lin, C. J.; Lai, Y. K. Light-driven sustainable hydrogen production utilizing TiO2 nanostructures: A review. Small Methods 2019, 3, 1800184.
[11]
Fang, S. Y.; Hu, Y. H. Recent progress in photocatalysts for overall water splitting. Int. J. Energy Res. 2019, 43, 1082-1098.
[12]
Chen, S. S; Takata, T.; Domen, K. Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2017, 2, 17050.
[13]
Muradov, N. Z.; Veziroğlu, T. N. “Green” path from fossil-based to hydrogen economy: An overview of carbon-neutral technologies. Int. J. Hydrogen Energy 2008, 33, 6804-6839.
[14]
Pinaud, B. A.; Benck, J. D.; Seitz, L. C.; Forman, A. J.; Chen, Z. B.; Deutsch, T. G.; James, B. D.; Baum, K. N.; Baum, G. N.; Ardo, S. et al. Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ. Sci. 2013, 6, 1983-2002.
[15]
Xu, P. T.; Mccool, N. S.; Mallouk, T. E. Water splitting dye-sensitized solar cells. Nano Today 2017, 14, 42-58.
[16]
Zhang, W.; Qi, J.; Liu, K. Q.; Cao, R. A nickel-based integrated electrode from an autologous growth strategy for highly efficient water oxidation. Adv. Energy Mater. 2016, 6, 1502489.
[17]
Maeda, K. Photocatalytic water splitting using semiconductor particles: History and recent developments. J. Photochem. Photobiol., C: Photochem. Rev. 2011, 12, 237-268.
[18]
Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446-6473.
[19]
Luo, J. S.; Im, J. H.; Mayer, M. T.; Schreier, M.; Nazeeruddin, M. K.; Park, N. G.; Tilley, S. D.; Fan, H. J.; Grätzel, M. Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science 2014, 345, 1593-1596.
[20]
Liu, X. L.; Ma, R.; Wang, X. X.; Ma, Y.; Yang, Y. P.; Zhuang, L.; Zhang, S.; Jehan, R.; Chen, J. R.; Wang, X. K. Graphene oxide-based materials for efficient removal of heavy metal ions from aqueous solution: A review. Environ. Pollut. 2019, 252, 62-73.
[21]
Chini, C. M.; Schreiber, K. L.; Barker, Z. A.; Stillwell, A. S. Quantifying energy and water savings in the U.S. residential sector. Environ. Sci. Technol. 2016, 50, 9003-9012.
[22]
Schwarzenbach, R. P.; Escher, B. I.; Fenner, K.; Hofstetter, T. B.; John, C. A.; Von Gunten, U.; Wehrli, B. The challenge of micropollutants in aquatic systems. Science 2006, 313, 1072-1077.
[23]
Vörösmarty, C. J.; Green, P.; Salisbury, J.; Lammers, R. B. Global water resources: Vulnerability from climate change and population growth. Science 2000, 289, 284-288.
[24]
Fukuzumi, S.; Lee, Y. M.; Nam, W. Fuel production from seawater and fuel cells using seawater. ChemSusChem. 2017, 10, 4264-4276.
[25]
Kumaravel, V.; Abdel-Wahab, A. A short review on hydrogen, biofuel, and electricity production using seawater as a medium. Energy Fuels 2018, 32, 6423-6437.
[26]
Ichikawa, S. Photoelectrocatalytic production of hydrogen from natural seawater under sunlight. Int. J. Hydrogen Energy 1997, 22, 675-678.
[27]
Ji, S. M.; Jun, H.; Jang, J. S.; Son, H. C.; Borse, P. H.; Lee, J. S. Photocatalytic hydrogen production from natural seawater. J. Photochem. Photobiol., A: Chem. 2007, 189, 141-144.
[28]
Li, L. Y.; Zhou, Z. M.; Li, L. Y.; Zhuang, Z. Y.; Bi, J. H.; Chen, J. H.; Yu, Y.; Yu, J. H. Thioether-functionalized 2D covalent organic framework featuring specific affinity to Au for photocatalytic hydrogen production from seawater. ACS Sustainable Chem. Eng. 2019, 7, 18574-18581.
[29]
Li, Y. X.; He, F.; Peng, S. Q.; Lu, G. X.; Li, S. B. Photocatalytic H2 evolution from NaCl saltwater over ZnS1-x-0.5yOx(OH)y-ZnO under visible light irradiation. Int. J. Hydrogen Energy 2011, 36, 10565-10573.
[30]
Li, Y. X.; Lin, S. Y.; Peng, S. Q.; Lu, G. X.; Li, S. B. Modification of ZnS1-x-0.5yOx(OH)y-ZnO photocatalyst with NiS for enhanced visible-light-driven hydrogen generation from seawater. Int. J. Hydrogen Energy 2013, 38, 15976-15984.
[31]
Li, Z. S.; Luo, W. J.; Zhang, M. L.; Feng, J. Y.; Zou, Z. G. Photoelectrochemical cells for solar hydrogen production: Current state of promising photoelectrodes, methods to improve their properties, and outlook. Energy Environ. Sci. 2013, 6, 347-370.
[32]
Luo, W. J; Yang, Z. S.; Li, Z. S.; Zhang, J. Y.; Liu, J. G.; Zhao, Z. Y.; Wang, Z. Q.; Yan, S. C.; Yu, T.; Zou, Z. G. Solar hydrogen generation from seawater with a modified BiVO4 photoanode. Energy Environ. Sci. 2011, 4, 4046-4051.
[33]
Ran, J. R.; Zhang, J.; Yu, J. G.; Jaroniec, M.; Qiao, S. Z. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev. 2014, 43, 7787-7812.
[34]
Fajrina, N.; Tahir, M. A critical review in strategies to improve photocatalytic water splitting towards hydrogen production. Int. J. Hydrogen Energy 2019, 44, 540-577.
[35]
Moniz, S. J. A.; Shevlin, S. A.; Martin, D. J.; Guo, Z. X.; Tang, J. W. Visible-light driven heterojunction photocatalysts for water splitting —A critical review. Energy Environ. Sci. 2015, 8, 731-759.
[36]
Hisatomi, T.; Domen, K. Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts. Nat. Catal. 2019, 2, 387-399.
[37]
Miseki, Y.; Sayama, K. Photocatalytic water splitting for solar hydrogen production using the carbonate effect and the Z-scheme reaction. Adv. Energy Mater. 2019, 9, 1801294.
[38]
Wang, Y. O.; Suzuki, H.; Xie, J. J.; Tomita, O.; Martin, D. J.; Higashi, M.; Kong, D.; Abe, R.; Tang, J. W. Mimicking natural photosynthesis: Solar to renewable H2 fuel synthesis by Z-scheme water splitting systems. Chem. Rev. 2018, 118, 5201-5241.
[39]
Guan, X. J.; Chowdhury, F. A.; Pant, N.; Guo, L. J.; Vayssieres, L.; Mi, Z. T. Efficient unassisted overall photocatalytic seawater splitting on GaN-based nanowire arrays. J. Phys. Chem. C 2018, 122, 13797-13802.
[40]
Wu, M. C.; Sápi, A.; Avila, A.; Szabó, M.; Hiltunen, J.; Huuhtanen, M.; Tóth, G.; Kukovecz, Á.; Kónya, Z.; Keiski, R. et al. Enhanced photocatalytic activity of TiO2 nanofibers and their flexible composite films: Decomposition of organic dyes and efficient H2 generation from ethanol-water mixtures. Nano Res. 2011, 4, 360-369.
[41]
Li, R. G.; Weng, Y. X.; Zhou, X.; Wang, X. L.; Mi, Y.; Chong, R. F.; Han, H. X.; Li, C. Achieving overall water splitting using titanium dioxide-based photocatalysts of different phases. Energy Environ. Sci. 2015, 8, 2377-2382.
[42]
Peng, S. Q.; Liu, X. Y.; Ding, M.; Li Y. X. Preparation of CdS-Pt/TiO2 composite and the properties for splitting sea water into hydrogen under visible light irradiation. J. Mol. Catal. 2013, 27, 459-466.
[43]
Gao, M. M.; Connor, P. K. N.; Ho, G. W. Plasmonic photothermic directed broadband sunlight harnessing for seawater catalysis and desalination. Energy Environ. Sci. 2016, 9, 3151-3160.
[44]
Simamora, A. J.; Hsiung, T. L.; Chang, F. C.; Yang, T. C.; Liao, C. Y.; Wang, H. P. Photocatalytic splitting of seawater and degradation of methylene blue on CuO/nano TiO2. Int. J. Hydrogen Energy 2012, 37, 13855-13858.
[45]
Sinhamahapatra, A.; Lee, H. Y.; Shen, S. H.; Mao, S. S.; Yu, J. S. H-doped TiO2-x prepared with MgH2 for highly efficient solar-driven hydrogen production. Appl. Catal. B: Environ. 2018, 237, 613-621.
[46]
Simamora, A. J.; Chang, F. C.; Wang, H. P.; Yang, T. C.; Wei, Y. L.; Lin, W. K. H2 fuels from photocatalytic splitting of seawater affected by nano-TiO2 promoted with CuO and NiO. Int. J. Photoenergy 2013, 2013, 419182.
[47]
DeepanPrakash, D.; Premnath, V.; Raghu, C.; Vishnukumar, S.; Jayanthi, S. S.; Easwaramoorthy, D. Harnessing power from sea water using nano material as photocatalyst and solar energy as light source: The role of hydrocarbon as dual agent. Int. J. Energy Res. 2014, 38, 249-253.
[48]
Song, T.; Zhang, P. Y.; Wang, T. T.; Ali, A.; Zeng, H. P. Constructing a novel strategy for controllable synthesis of corrosion resistant Ti3+ self-doped titanium-silicon materials with efficient hydrogen evolution activity from simulated seawater. Nanoscale 2018, 10, 2275-2284.
[49]
Wang, C.; Abdul-Rahman, H.; Rao, S. P. A new design of luminescent solar concentrator and its trial run. Int. J. Energy Res. 2010, 34, 1372-1385.
[50]
Cao, S.; Chan, T. S.; Lu, Y. R.; Shi, X. H.; Fu, B.; Wu, Z. J.; Li H. M.; Liu, K.; Alzuabi, S.; Cheng, P. et al. Photocatalytic pure water splitting with high efficiency and value by Pt/porous brookite TiO2 nanoflutes. Nano Energy 2020, 67, 104287.
[51]
Sakurai, H.; Kiuchi, M.; Jin, T. Pt/TiO2 granular photocatalysts for hydrogen production from aqueous glycerol solution: Durability against seawater constituents and dissolved oxygen. Catal. Commun. 2018, 114, 124-128.
[52]
Speltini, A.; Scalabrini, A.; Maraschi, F.; Sturin, M.; Pisanu, A.; Malavasi, L.; Profumo, A. Improved photocatalytic H2 production assisted by aqueous glucose biomass by oxidized g-C3N4. Int. J. Hydrogen Energy 2018, 43, 14925-14933.
[53]
Yang, C. W.; Qin, J. Q.; Rajendran, S.; Zhang, X. Y.; Liu, R. P. WS2 and C-TiO2 nanorods acting as effective charge separators on g-C3N4 to boost visible-light activated hydrogen production from seawater. ChemSusChem 2018, 11, 4077-4085.
[54]
Mishra, B.; Mishra, S.; Satpati B.; Chaudhary, Y. S. Engineering the surface of a polymeric photocatalyst for stable solar-to-chemical fuel conversion from seawater. ChemSusChem 2019, 12, 3383-3389.
[55]
Abe, R.; Higashi, M.; Sayama, K.; Abe, Y.; Sugihara, H. Photocatalytic activity of R3MO7 and R2Ti2O7 (R = Y, Gd, La; M = Nb, Ta) for water splitting into H2 and O2. J. Phys. Chem. B 2006, 110, 2219-2226.
[56]
Yang, T. C.; Chang, F. C.; Wang, H. P.; Wei, Y. L.; Jou, C. J. Photocatalytic splitting of seawater effected by (Ni-ZnO)@C nanoreactors. Mar. Pollut. Bull. 2014, 85, 696-699.
[57]
Cui, G. W.; Wang, W.; Ma, M. Y.; Xie, J. F.; Shi, X. F.; Deng, N.; Xin, J. P.; Tang, B. IR-Driven photocatalytic water splitting with WO2-NaxWO3 hybrid conductor material. Nano Lett. 2015, 15, 7199-7203.
[58]
Qiu, B. C.; Zhu, Q. H.; Xing, M. Y.; Zhang, J. L. A robust and efficient catalyst of CdxZn1-xSe motivated by CoP for photocatalytic hydrogen evolution under sunlight irradiation. Chem. Commun. 2017, 53, 897-900.
[59]
Yang, X. Y.; Hu, Z. C.; Yin, Q. W.; Shu, C.; Jiang, X. F.; Zhang, J.; Wang, X. H.; Jiang, J. X.; Huang, F.; Cao, Y. Water-soluble conjugated molecule for solar-driven hydrogen evolution from salt water. Adv. Funct. Mater. 2019, 29, 1808156.
[60]
Liu, Y. Y.; Liao, Z. J.; Ma, X. L.; Xiang, Z. H. Ultrastable and efficient visible-light-driven hydrogen production based on donor-acceptor copolymerized covalent organic polymer. ACS Appl. Mater. Interfaces 2018, 10, 30698-30705.
[61]
Liu, Y. Y.; Xiang, Z. H. Fully conjugated covalent organic polymer with carbon-encapsulated Ni2P for highly sustained photocatalytic H2 production from seawater. ACS Appl. Mater. Interfaces 2019, 11, 41313-41320.
[62]
Zhu, C.; Liu, C. A.; Fu, Y. J.; Gao, J.; Huang, H.; Liu, Y.; Kang, Z. H. Construction of CDs/CdS photocatalysts for stable and efficient hydrogen production in water and seawater. Appl. Catal. B: Environ. 2019, 242, 178-185.
[63]
Li, Y. X.; He, F.; Peng, S. Q.; Gao, D.; Lu, G. X.; Li, S. B. Effects of electrolyte NaCl on photocatalytic hydrogen evolution in the presence of electron donors over Pt/TiO2. J. Mol. Catal. A: Chem. 2011, 341, 71-76.
[64]
Maeda, K.; Masuda, H.; Domen, K. Effect of electrolyte addition on activity of (Ga1-xZnx)(N1-xOx) photocatalyst for overall water splitting under visible light. Catal. Today 2009, 147, 173-178.
[65]
Li, Y. X.; Gao, D.; Peng, S. Q.; Lu, G. X.; Li, S. B. Photocatalytic hydrogen evolution over Pt/Cd0.5Zn0.5S from saltwater using glucose as electron donor: An investigation of the influence of electrolyte NaCl. Int. J. Hydrogen Energy 2011, 36, 4291-4297.
[66]
Li, Y. X.; Lu, G. X.; Li, S. B. Photocatalytic hydrogen generation and decomposition of oxalic acid over platinized TiO2. Appl. Catal. A: Gen. 2001, 214, 179-185.
[67]
Krivec, M.; Dillert, R.; Bahnemann, D. W.; Mehle, A.; Štrancar, J.; Dražić, G. The nature of chlorine-inhibition of photocatalytic degradation of dichloroacetic acid in a TiO2-based microreactor. Phys. Chem. Chem. Phys. 2014, 16, 14867-14873.
Nano Research
Pages 2313-2322
Cite this article:
Zhang J, Hu W, Cao S, et al. Recent progress for hydrogen production by photocatalytic natural or simulated seawater splitting. Nano Research, 2020, 13(9): 2313-2322. https://doi.org/10.1007/s12274-020-2880-z
Topics:

1085

Views

182

Crossref

N/A

Web of Science

172

Scopus

1

CSCD

Altmetrics

Received: 25 March 2020
Revised: 06 May 2020
Accepted: 17 May 2020
Published: 19 June 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return