AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Controllable synthesis of NiS and NiS2 nanoplates by chemical vapor deposition

Chen Dai1Bo Li2Jia Li1Bei Zhao1Ruixia Wu1Huifang Ma1Xidong Duan1 ( )
Hunan Key Laboratory of Two-Dimensional Materials and State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
Hunan Key Laboratory of Two-Dimensional Materials, Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, China
Show Author Information

Graphical Abstract

Abstract

Mulitipe stoichiometric ratio of two-dimensional (2D) transition metal dichalcogenides (TMDCs) attracted considerable interest for their unique chemical and physical properties. Here we developed a chemical vapor deposition (CVD) method to controllably synthesize ultrathin NiS and NiS2 nanoplates. By tuning the growth temperature and the amounts of the sulfur powder, 2D non-layered NiS and NiS2 nanoplates can be selectively prepared with the thickness of 2.0 and 7.0 nm, respectively. X-ray diffraction (XRD) and transmission electron microscopy (TEM) characterization reveal that the 2D NiS and NiS2 nanoplates are high-quality single crystals in the hexagonal and cubic phase, respectively. Electrical transport studies show that electrical conductivities of the 2D NiS and NiS2 nanoplates are as high as 4.6 × 105 and 6.3 × 105 S·m-1, respectively. The electrical results demonstrate that the synthesized metallic NiS and NiS2 could serve as good electrodes in 2D electronics.

Electronic Supplementary Material

Download File(s)
12274_2020_2887_MOESM1_ESM.pdf (1.3 MB)

References

[1]
Chen, P.; Zhang, Z. W.; Duan, X. D.; Duan, X. F. Chemical synthesis of two-dimensional atomic crystals, heterostructures and superlattices. Chem. Soc. Rev. 2018, 47, 3129-3151.
[2]
Zhou, J. D.; Lin, J. H.; Huang, X. W.; Zhou, Y.; Chen, Y.; Xia, J.; Wang, H.; Xie, Y.; Yu, H. M.; Lei, J. C. et al. A library of atomically thin metal chalcogenides. Nature 2018, 556, 355-359.
[3]
Feng, W.; Zheng, W.; Gao, F.; Chen, X. S.; Liu, G. B.; Hasan, T.; Cao, W. W.; Hu, P. A. Sensitive electronic-skin strain sensor array based on the patterned two-dimensional α-In2Se3. Chem. Mater. 2016, 28, 4278-4283.
[4]
Chang, H. C.; Tu, C. L.; Lin, K. I.; Pu, J.; Takenobu, T.; Hsiao, C. N.; Chen, C. H. Synthesis of large-area InSe monolayers by chemical vapor deposition. Small 2018, 14, 1802351.
[5]
Ahn, J. H.; Lee, M. J.; Heo, H.; Sung, J. H.; Kim, K.; Hwang, H.; Jo, M. H. Deterministic two-dimensional polymorphism growth of hexagonal n-type sns2 and orthorhombic p-type SnS crystals. Nano Lett. 2015, 15, 3703-3708.
[6]
Ji, Q. Q.; Li, C.; Wang, J. L.; Niu, J. J.; Gong, Y.; Zhang, Z. P.; Fang, Q. Y.; Zhang, Y.; Shi, J. P.; Liao, L. et al. Metallic vanadium disulfide nanosheets as a platform material for multifunctional electrode applications. Nano Lett. 2017, 17, 4908-4916.
[7]
Zhang, Z. W.; Chen, P.; Duan, X. D.; Zang, K. T.; Luo, J.; Duan, X. F. Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science 2017, 357, 788-792.
[8]
Zhang, Z. P.; Niu, J. J.; Yang, P. F.; Gong, Y.; Ji, Q. Q.; Shi, J. P.; Fang, Q. Y.; Jiang, S. L.; Li, H.; Zhou, X. B. et al. Van der Waals epitaxial growth of 2D metallic vanadium diselenide single crystals and their extra-high electrical conductivity. Adv. Mater. 2017, 29, 1702359.
[9]
Das, S.; Chen, H. Y.; Penumatcha, A. V.; Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 2013, 13, 100-105.
[10]
Liu, Y. P.; Gao, Y. J.; Zhang, S. Y.; He, J.; Yu, J.; Liu, Z. W. Valleytronics in transition metal dichalcogenides materials. Nano Res. 2019, 12, 2695-2711.
[11]
Hong, H.; Liu, C.; Cao, T.; Jin, C. H.; Wang, S. X.; Wang, F.; Liu, K. H. Interfacial engineering of van der Waals coupled 2D layered materials. Adv. Mater. Interfaces 2017, 4, 1601054.
[12]
Fan, C.; Li, Y.; Lu, F. Y.; Deng, H. X.; Wei, Z. M.; Li, J. B. Wavelength dependent UV-Vis photodetectors from SnS2 flakes. RSC Adv. 2016, 6, 422-427.
[13]
Su, J. W.; Wang, M. S.; Li, Y.; Wang, F. K.; Chen, Q.; Luo, P.; Han, J. B.; Wang, S.; Li, H. Q.; Zhai, T. Y. Sub-millimeter-scale monolayer p-type H-phase VS2. Adv. Funct. Mater. 2020, 30, 2000240.
[14]
Ma, H. F.; Wan, Z.; Li, J.; Wu, R. X.; Zhang, Z. W.; Li, B.; Zhao, B.; Qian, Q.; Liu, Y.; Xia, Q. H. et al. Phase-tunable synthesis of ultrathin layered tetragonal CoSe and nonlayered hexagonal CoSe nanoplates. Adv. Mater. 2019, 31, 1900901.
[15]
Voiry, D.; Mohite, A.; Chhowalla, M. Phase engineering of transition metal dichalcogenides. Chem. Soc. Rev. 2015, 44, 2702-2712.
[16]
Duan, X. D.; Wang, C.; Shaw, J. C.; Cheng, R.; Chen, Y.; Li, H. L.; Wu, X. P.; Tang, Y.; Zhang, Q. L.; Pan, A. L. et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 2014, 9, 1024-1030.
[17]
Lv, R. T.; Robinson, J. A.; Schaak, R. E.; Sun, D.; Sun, Y. F.; Mallouk, T. E.; Terrones, M. Transition metal dichalcogenides and beyond: Synthesis, properties, and applications of single-and few-layer nanosheets. Acc. Chem. Res. 2015, 48, 56-64.
[18]
Wang, X. S.; Lin, J. H.; Zhu, Y. M.; Luo, C.; Suenaga, K.; Cai, C. Z.; Xie, L. M. Chemical vapor deposition of trigonal prismatic NbS2 monolayers and 3R-polytype few-layers. Nanoscale 2017, 9, 16607-16611.
[19]
Li, B.; Huang, L.; Zhong, M. Z.; Li, Y.; Wang, Y.; Li, J. B.; Wei, Z. M. Direct vapor phase growth and optoelectronic application of large band offset SnS2/MoS2 vertical bilayer heterostructures with high lattice mismatch. Adv. Electron. Mater. 2016, 2, 1600298.
[20]
Li, N. N.; Zhang, Y.; Cheng, R. Q.; Wang, J. J.; Li, J.; Wang, Z. X.; Sendeku, M. G.; Huang, W. H.; Yao, Y. Y.; Wen, Y. et al. Synthesis and optoelectronic applications of a stable p-type 2D material: α-MnS. ACS Nano 2019, 13, 12662-12670.
[21]
Mondal, D.; Villemure, G.; Li, G. C.; Song, C. J.; Zhang, J. J.; Hui, R.; Chen, J. W.; Fairbridge, C. Synthesis, characterization and evaluation of unsupported porous NiS2 sub-micrometer spheres as a potential hydrodesulfurization catalyst. Appl. Catal. A 2013, 450, 230-236.
[22]
Koehler, R. F. Jr.; White, R. L. Metal-to-semimetal transition in NiS. J. Appl. Phys. 1973, 44, 1682-1686.
[23]
Thio, T.; Bennett, J. W. Hall effect and conductivity in pyrite NiS2. Phys. Rev. B 1994, 50, 10574-10577.
[24]
White, R. M.; Mott, N. F. The metal-non-metal transition in nickel sulphide (NiS). Philos. Mag. 1971, 24, 845-856.
[25]
Wang, J. H.; Cheng, Z.; Brédas, J. L.; Liu, M. Electronic and vibrational properties of nickel sulfides from first principles. J. Chem. Phys. 2007, 127, 214705.
[26]
Jiang, N.; Tang, Q.; Sheng, M. L.; You, B.; Jiang, D. E.; Sun, Y. J. Nickel sulfides for electrocatalytic hydrogen evolution under alkaline conditions: A case study of crystalline NiS, NiS2, and Ni3S2 nanoparticles. Catal. Sci. Technol. 2016, 6, 1077-1084.
[27]
Luo, P.; Zhang, H. J.; Liu, L.; Zhang, Y.; Deng, J.; Xu, C. H.; Hu, N.; Wang, Y. Targeted synthesis of unique nickel sulfide (Nis, NiS2) microarchitectures and the applications for the enhanced water splitting system. ACS Appl. Mater. Interfaces 2017, 9, 2500-2508.
[28]
Han, S. C.; Kim, K. W.; Ahn, H. J.; Ahn, J. H.; Lee, J. Y. Charge- discharge mechanism of mechanically alloyed nis used as a cathode in rechargeable lithium batteries. J. Alloys Compd. 2003, 361, 247-251.
[29]
Luo, R.; Sun, X.; Yan, L. F.; Chen, W. M. Synthesis and optical properties of novel nickel disulfide dendritic nanostructures. Chem. Lett. 2004, 33, 830-831.
[30]
Wu, X. L.; Yang, B.; Li, Z. J.; Lei, L. C.; Zhang, X. W. Synthesis of supported vertical NiS2 nanosheets for hydrogen evolution reaction in acidic and alkaline solution. RSC Adv. 2015, 5, 32976-32982.
[31]
Yang, L.; Gao, M. G.; Dai, B.; Guo, X. H.; Liu, Z. Y.; Peng, B. H. An efficient NiS@N/S-C hybrid oxygen evolution electrocatalyst derived from metal-organic framework. Electrochim. Acta 2016, 191, 813-820.
[32]
Yang, J. Q.; Duan, X. C.; Qin, Q.; Zheng, W. J. Solvothermal synthesis of hierarchical flower-like β-NiS with excellent electrochemical performance for supercapacitors. J. Mater. Chem. A 2013, 1, 7880-7884.
[33]
Ni, S. B.; Yang, X. L.; Li, T. Fabrication of a porous NiS/Ni nanostructured electrode via a dry thermal sulfuration method and its application in a lithium ion battery. J. Mater. Chem. 2012, 22, 2395-2397.
[34]
Yang, J.; Bao, C. X.; Zhu, K.; Yu, T.; Li, F. M.; Liu, J. G.; Li, Z. S.; Zou, Z. G. High catalytic activity and stability of nickel sulfide and cobalt sulfide hierarchical nanospheres on the counter electrodes for dye-sensitized solar cells. Chem. Commun. 2014, 50, 4824-4826.
[35]
Guillaume, F.; Huang, S. S.; Harris, K. D. M.; Couzi, M.; Talaga, D. Optical phonons in millerite (NiS) from single-crystal polarized Raman spectroscopy. J. Raman Spectrosc. 2008, 39, 1419-1422.
[36]
Suzuki, T.; Uchinokura, K.; Sekine, T.; Matsuura, E. Raman scattering of NiS2. Solid State Commun. 1977, 23, 847-852.
[37]
Li, J.; Zhao, B.; Chen, P.; Wu, R. X.; Li, B.; Xia, Q. L.; Guo, G. H.; Luo, J.; Zang, K. T.; Zhang, Z. W. et al. Synthesis of ultrathin metallic MTe2 (M = V, Nb, Ta) single-crystalline nanoplates. Adv. Mater. 2018, 30, 1801043.
[38]
Yao, K. K.; Chen, P.; Zhang, Z. W.; Li, J.; Ai, R. Q.; Ma, H. F.; Zhao, B.; Sun, G. Z.; Wu, R. X.; Tang, X. W. et al. Synthesis of ultrathin two-dimensional nanosheets and van der Waals heterostructures from non-layered γ-CuI. npj 2D Mater. Appl. 2018, 2, 16.
[39]
Liu, Y.; Guo, J.; Zhu, E. B.; Liao, L.; Lee, S. J.; Ding, M. N.; Shakir, I.; Gambin, V.; Huang, Y.; Duan, X. F. Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. Nature 2018, 557, 696-700.
[40]
Tian, H.; Chin, M. L.; Najmaei, S.; Guo, Q. S.; Xia, F. N.; Wang, H.; Dubey, M. Optoelectronic devices based on two-dimensional transition metal dichalcogenides. Nano Res. 2016, 9, 1543-1560.
[41]
Cui, X.; Shih, E. M.; Jauregui, L. A.; Chae, S. H.; Kim, Y. D.; Li, B. C.; Seo, D.; Pistunova, K.; Yin, J.; Park, J. H. et al. Low-temperature ohmic contact to monolayer MoS2 by van der Waals bonded co/h-BN electrodes. Nano Lett. 2017, 17, 4781-4786.
[42]
Bao, W. Z.; Cai, X. H.; Kim, D.; Sridhara, K.; Fuhrer, M. S. High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects. Appl. Phys. Lett. 2013, 102, 042104.
[43]
Allain, A.; Kang, J. H.; Banerjee, K.; Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 2015, 14, 1195-1205.
[44]
Kappera, R.; Voiry, D.; Yalcin, S. E.; Branch, B.; Gupta, G.; Mohite, A. D.; Chhowalla, M. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 2014, 13, 1128-1134.
[45]
Liu, B. L.; Fathi, M.; Chen, L.; Abbas, A.; Ma, Y. Q.; Zhou, C. W. Chemical vapor deposition growth of monolayer WSe2 with tunable device characteristics and growth mechanism study. ACS Nano 2015, 9, 6119-6127.
[46]
Yang, S. X.; Tongay, S.; Li, Y.; Yue, Q.; Xia, J. B.; Li, S. S.; Li, J. B.; Wei, S. H. Layer-dependent electrical and optoelectronic responses of ReSe2 nanosheet transistors. Nanoscale 2014, 6, 7226-7231.
[47]
Li, J.; Yang, X. D.; Liu, Y.; Huang, B. L.; Wu, R. X.; Zhang, Z. W.; Zhao, B.; Ma, H. F.; Dang, W. Q.; Wei, Z. et al. General synthesis of two-dimensional van der Waals heterostructure arrays. Nature 2020, 579, 368-374.
[48]
Wu, R. X.; Tao, Q. Y.; Dang, W. Q.; Liu, Y.; Li, B.; Li, J.; Zhao, B.; Zhang, Z. W.; Ma, H. F.; Sun, G. Z. et al. Van der Waals epitaxial growth of atomically thin 2D metals on dangling-bond-free WSe2 and WS2. Adv. Funct. Mater. 2019, 29, 1806611.
[49]
Zhao, B.; Dang, W. Q.; Yang, X. D.; Li, J.; Bao, H. H.; Wang, K.; Luo, J.; Zhang, Z. W.; Li, B.; Xie, H. P. et al. Van der Waals epitaxial growth of ultrathin metallic NiSe nanosheets on WSe2 as high performance contacts for WSe2 transistors. Nano Res. 2019, 12, 1683-1689.
[50]
Leong, W. S.; Ji, Q. Q.; Mao, N. N.; Han, Y. M.; Wang, H. Z.; Goodman, A. J.; Vignon, A.; Su, C.; Guo, Y. F.; Shen, P. C. et al. Synthetic lateral metal-semiconductor heterostructures of transition metal disulfides. J. Am. Chem. Soc. 2018, 140, 12354-12358.
[51]
Gong, X.; Zhao, X. X.; Pam, M. E.; Yao, H. Z.; Li, Z. B.; Geng, D. C.; Pennycook, S. J.; Shi, Y. M.; Yang, H. Y. Location-selective growth of two-dimensional metallic/semiconducting transition metal dichalcogenide heterostructures. Nanoscale 2019, 11, 4183-4189.
[52]
Zhang, Y.; Yin, L.; Chu, J. W.; Shifa, T. A.; Xia, J.; Wang, F.; Wen, Y.; Zhan, X. Y.; Wang, Z. X.; He, J. Edge-epitaxial growth of 2D NbS2-WS2 lateral metal-semiconductor heterostructures. Adv. Mater. 2018, 30, 1803665.
[53]
Zhang, Z. P.; Gong, Y.; Zou, X. L.; Liu, P. R.; Yang, P. F.; Shi, J. P.; Zhao, L. Y.; Zhang, Q.; Gu, L.; Zhang, Y. F. Epitaxial growth of two-dimensional metal-semiconductor transition-metal dichalcogenide vertical stacks (VSe2/MX2) and their band alignments. ACS Nano 2019, 13, 885-893.
Nano Research
Pages 2506-2511
Cite this article:
Dai C, Li B, Li J, et al. Controllable synthesis of NiS and NiS2 nanoplates by chemical vapor deposition. Nano Research, 2020, 13(9): 2506-2511. https://doi.org/10.1007/s12274-020-2887-5
Topics:

848

Views

83

Crossref

N/A

Web of Science

81

Scopus

5

CSCD

Altmetrics

Received: 19 April 2020
Revised: 10 May 2020
Accepted: 15 May 2020
Published: 02 July 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return