AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Vasarely painting at the nanoscale on sapphire crystals

Caroline Matringe1Elsa Thune1Rémy Cavalotti1Ahmad Fakih1Stephan Arnaud2Nils Blanc2Nathalie Boudet2Alessandro Coati3Yves Garreau3,4David Babonneau5René Guinebretière1( )
IRCER, UMR CNRS 7315, Centre Européen de la Céramique, Université de Limoges, 12 rue Atlantis, 87068 Limoges, France
Institut Néel UPR CNRS 2940, CRG D2AM Beamline, ESRF, Université Grenoble Alpes, 38042 Grenoble, France
SixS Beamline, Synchrotron SOLEIL, BP48, 91192 Gif sur Yvette, France
Laboratoire Matériaux et Phénomènes Quantiques, UMR CNRS 7162, Université de Paris, 75013 Paris, France
Institut Pprime, Département Physique et Mécanique des Matériaux, UPR CNRS 3346, Université de Poitiers, SP2MI, TSA 41123, 86073 Poitiers Cedex 9, France
Show Author Information

Graphical Abstract

Abstract

We demonstrate that convenient thermal treatment of a specific sapphire vicinal surface can induce the formation of a fully two-dimensional (2D) ordered surface made of a periodic assembly of (006) facets. The similarity between the resulting surface topography and patterns represented in the "hexagon series" of paintings by Vasarely is really striking! We thus propose to call these surfaces as "nanoscaled Vasarely surfaces" . We also show that the self-organization process, which is driven by the minimization of the free energy of a closed system, results in a quasi-linear isothermal growth of the facets’ surface area over time.

References

[1]
Barth, J. V.; Costantini, G.; Kern, K. Engineering atomic and molecular nanostructures at surfaces. Nature 2005, 437, 671-679.
[2]
Yagi, K.; Minoda, H.; Degawa, M. Step bunching, step wandering and faceting: Self-organization at Si surfaces. Surf. Sci. Rep. 2001, 43, 45-126.
[3]
Misbah, C.; Pierre-Louis, O.; Saito, Y. Crystal surfaces in and out of equilibrium: A modern view. Rev. Mod. Phys. 2010, 82, 981-1040.
[4]
Kim, Y.; Jo, M. H.; Kim, T. C.; Yang, C. W.; Kim, J. W.; Hwang, J. S.; Noh, D. Y.; Kim, N. D.; Chung, J. W. Coarsening kinetics of a spinodally decomposed vicinal Si(111) surface. Phys. Rev. Lett. 2009, 102, 156103.
[5]
Rousset, S.; Repain, V.; Baudot, G.; Garreau, Y.; Lecoeur, J. Self-ordering of Au(111) vicinal surfaces and application to nanostructure organized growth. J. Phys.: Condens. Matter 2003, 15, S3363.
[6]
Men, F. K.; Liu, F.; Wang, P. J.; Chen, C. H.; Cheng, D. L.; Lin, J. L.; Himpsel, F. J. Self-organized nanoscale pattern formation on vicinal Si(111) surfaces via a two-stage faceting transition. Phys. Rev. Lett. 2002, 88, 096105.
[7]
Cuccureddu, F.; Murphy, S.; Shvets, I. V.; Porcu, M.; Zandbergen, H. W.; Sidorov, N. S.; Bolzhko, S. I. Surface morphology of c-plane sapphire (α-alumina) produced by high temperature anneal. Surf. Sci. 2010, 604, 1294-1299.
[8]
Sánchez, F.; Herranz, G.; Infante, I. C.; Fontcuberta, J.; Garcia-Cuenca, M. V.; Ferrater, C.; Varela, M. Critical effects of substrate terraces and steps morphology on the growth mode of epitaxial SrRuO3 films. Appl. Phys. Lett. 2004, 85, 1981-1983.
[9]
Nakamura, S. The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes. Science 1998, 281, 956-961.
[10]
Koester, R.; Hwang, J. S.; Salomon, D.; Chen, X. J.; Bougerol, C.; Barnes, J. P.; Le Si Dang, D.; Rigutti, L.; de Luna Bugallo, A. et al. M-plane core shell InGaN/GaN multiple-quantum-wells on GaN wires for electroluminescent devices. Nano Lett. 2011, 11, 43839-43845.
[11]
Huang, M. H.; Mao, S.; Feick, H.; Yan, H. Q.; Wu, Y. Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. D. Room-temperature ultraviolet nanowire nanolasers. Science 2001, 292, 1897-1899.
[12]
Eaton, S. W.; Fu, A.; Wong, A. B.; Ning, C. Z.; Yang, P. D. Semiconductor nanowire lasers. Nat. Rev. Mater. 2016, 1, 16028.
[13]
Lee G. H. Role of substrate step bunches on the growth behavior of LiNbO3 thin film on α-Al2O3 substrate. Mater. Sci. Eng. B 2007, 138, 41-45.
[14]
Ago, H.; Imamoto, K.; Ishigami, N.; Ohdo, R.; Ikeda, K. I.; Tsuji M. Competition and cooperation between lattice-oriented growth and step-templated growth of aligned carbon nanotubes on sapphire. Appl. Phys. Lett. 2007, 90, 123112.
[15]
Bachelet, R.; Cottrino, S.; Nahélou, G.; Coudert, V.; Boulle, A.; Soulestin, B.; Rossignol, F.; Guinebretière R.; Dauger, A. Self-patterned oxide nanostructures grown by post-deposition thermal annealing on stepped surfaces. Nanotechnology 2007, 18, 015301.
[16]
Boulle, A.; Kilburger, S.; Di Bin, P.; Millon, E.; Di Bin, C.; Guinebretière, R.; Bessaudou A. Role of nanostructure on the optical waveguiding properties of epitaxial LiNbO3 films. J. Phys. D: Appl. Phys. 2009, 42, 145403.
[17]
Aoki, R.; Arakawa, T.; Misawa, N.; Tero, R.; Urisu, T.; Takeuchi, A.; Ogino, T. Immobilization of protein molecules on step-controlled sapphire surfaces. Surf. Sci. 2007, 601, 4915-4921.
[18]
Thune, E.; Fakih, A.; Matringe, C.; Babonneau, D.; Guinebretière, R. Understanding of one dimensional ordering mechanisms at the (001) sapphire vicinal surface. J. Appl. Phys. 2017, 121, 015301.
[19]
Matringe, C.; Fakih, A.; Thune, E.; Babonneau, D.; Arnaud, S.; Blanc, N.; Boudet, N.; Guinebretière, R. Symmetric faceting of a sapphire vicinal surface revealed by grazing incidence small-angle X-ray scattering 3D mapping. Appl. Phys. Lett. 2017, 111, 031601.
[20]
Horcas, I.; Fernández, R.; Gómez-Rodíguez, J. M.; Colchero, J.; Gómez-Herrero, J.; Baro, A. M. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007, 78, 013705.
[21]
Chahine, G. A.; Blanc, N.; Arnaud, S.; de Geuser, F.; Guinebretière, R.; Boudet, N. Advanced non-destructive in situ characterization of metals with the French collaborating research group D2AM/BM02 beamline at the European synchrotron radiation facility. Metals 2019, 9, 352.
[22]
Babonneau, D. FitGISAXS: software package for modelling and analysis of GISAXS data using IGOR Pro. J. Appl. Cryst. 2010, 43, 929-936.
[23]
Robinson, I. K. Crystal truncation rods and surface roughness. Phys. Rev. B 1986, 33, 3830-3836.
[24]
Pimpinelli, A.; Villain, J.; Wolf, D. E.; Métois, J. J.; Heyraud, J. C.; Elkinani, I.; Uimin, G. Equilibrium step dynamics on vicinal surfaces. Surf. Sci. 1993, 295, 143-153.
[25]
Jeong, H. C.; Williams, E. D. Steps on surfaces: Experiment and theory. Surf. Sci. Rep. 1999, 34, 171-294.
[26]
Hahn, T. International Tables for Crystallography Volume A: Space-Group Symmetry; Springer: Dordrecht, 2011.
[27]
Babonneau, D.; Vandenhecke, E.; Camelio, S. Formation of nanoripples on amorphous alumina thin films during low-energy ion-beam sputtering: Experiments and simulations. Phys. Rev. B 2017, 95, 085412.
[28]
Graindorge, T. Représentation Géométrique des Réseaux Nanostructurés de Surfaces Vicinales de Saphir. Master Degree Thesis, Université de Limoges, 2017.
Nano Research
Pages 2512-2516
Cite this article:
Matringe C, Thune E, Cavalotti R, et al. Vasarely painting at the nanoscale on sapphire crystals. Nano Research, 2020, 13(9): 2512-2516. https://doi.org/10.1007/s12274-020-2888-4
Topics:

678

Views

1

Crossref

N/A

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 27 February 2020
Revised: 22 April 2020
Accepted: 18 May 2020
Published: 03 July 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return