AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Bioinspired hybrid patches with self-adhesive hydrogel and piezoelectric nanogenerator for promoting skin wound healing

Shuo Du1,§Nuoya Zhou2,§Yujie Gao1Ge Xie1Hongyao Du2Hao Jiang1Lianbin Zhang1( )Juan Tao2( )Jintao Zhu1( )
Key Lab of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China

§ Shuo Du and Nuoya Zhou contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Wound management is a crucial measure for skin wound healing and is significantly important to maintaining the integrity of skins and their functions. Electrical stimulation at the wound site is a compelling strategy for skin wound repair. However, there has been an urgent need for wearable and point-of-care electrical stimulation devices that have self-adhesive and mechanical properties comparable to wound tissue. Herein, we develop a bioinspired hybrid patch with self-adhesive and piezoelectric nanogenerator (HPSP) for promoting skin wound healing, which is composed of a mussel-inspired hydrogel matrix and a piezoelectric nanogenerator based on aligned electrospun poly(vinylidene fluoride) nanofibers. The device with optimized modulus and permeability for skin wear can self-adhere to the wound site and locally produce a dynamic voltage caused by motion. We show that the HPSP not only promotes fibroblast proliferation and migration in vitro, but also effectively facilitates the collagen deposition, angiogenesis, and re-epithelialization in vivo with the increased expressions of crucial growth factors. The HPSP reduces the wound closure time of full-thickness skin defects by about 1/3, greatly accelerating the healing process. This patch can serve as wearable and real-time electrical stimulation devices, potentially useful in clinical applications of skin wound healing.

Electronic Supplementary Material

Download File(s)
12274_2020_2891_MOESM1_ESM.pdf (3.2 MB)

References

[1]
McLister, A.; McHugh, J.; Cundell, J.; Davis, J. New developments in smart bandage technologies for wound diagnostics. Adv. Mater. 2016, 28, 5732-5737.
[2]
Gurtner, G. C.; Werner, S.; Barrandon, Y.; Longaker, M. T. Wound repair and regeneration. Nature 2008, 453, 314-321.
[3]
Martin, P. Wound healing-aiming for perfect skin regeneration. Science 1997, 276, 75-81.
[4]
Powers, J. G.; Higham, C.; Broussard, K.; Phillips, T. J. Wound healing and treating wounds: Chronic wound care and management. J. Am. Acad. Dermatol. 2016, 74, 607-625.
[5]
Xi, Y. W.; Ge, J.; Guo, Y.; Lei, B.; Ma, P. X. Biomimetic elastomeric polypeptide-based nanofibrous matrix for overcoming multidrug-resistant bacteria and enhancing full-thickness wound healing/skin regeneration. ACS Nano 2018, 12, 10772-10784.
[6]
Shi, L. X.; Liu, X.; Wang, W. S.; Jiang, L.; Wang, S. T. A self-pumping dressing for draining excessive biofluid around wounds. Adv. Mater. 2019, 31, 1804187.
[7]
Augustine, R.; Dan, P.; Sosnik, A.; Kalarikkal, N.; Tran, N.; Vincent, B.; Thomas, S.; Menu, P.; Rouxel, D. Electrospun poly(vinylidene fluoride-trifluoroethylene)/zinc oxide nanocomposite tissue engineering scaffolds with enhanced cell adhesion and blood vessel formation. Nano Res. 2017, 10, 3358-3376.
[8]
Liang, Y. P.; Zhao, X.; Hu, T. L.; Chen, B. J.; Yin, Z. H.; Ma, P. X.; Guo, B. L. Adhesive hemostatic conducting injectable composite hydrogels with sustained drug release and photothermal antibacterial activity to promote full-thickness skin regeneration during wound healing. Small 2019, 15, 1900046.
[9]
Qiu, H.; Pu, F.; Liu, Z. W.; Liu, X. M.; Dong, K.; Liu, C. Q.; Ren, J. S.; Qu, X. G. Hydrogel-based artificial enzyme for combating bacteria and accelerating wound healing. Nano Res. 2020, 13, 496-502.
[10]
Li, W. P.; Su, C. H.; Wang, S. J.; Tsai, F. J.; Chang, C. T.; Liao, M. C.; Yu, C. C.; Vi Tran, T. T.; Lee, C. N.; Chiu, W. T. et al. CO2 delivery to accelerate incisional wound healing following single irradiation of near-infrared lamp on the coordinated colloids. ACS Nano 2017, 11, 5826-5835.
[11]
Han, G.; Ceilley, R. Chronic wound healing: A review of current management and treatments. Adv. Ther. 2017, 34, 599-610.
[12]
Bhang, S. H.; Jang, W. S.; Han, J.; Yoon, J. K.; La, W. G.; Lee, E.; Kim, Y. S.; Shin, J. Y.; Lee, T. J.; Baik, H. K. et al. Zinc oxide nanorod-based piezoelectric dermal patch for wound healing. Adv. Funct. Mater. 2017, 27, 1603497.
[13]
Tian, J. J.; Shi, R.; Liu, Z.; Ouyang, H.; Yu, M.; Zhao, C. C.; Zou, Y.; Jiang, D. J.; Zhang, J. S.; Li, Z. Self-powered implantable electrical stimulator for osteoblasts’ proliferation and differentiation. Nano Energy 2019, 59, 705-714.
[14]
Wang, A. C.; Liu, Z.; Hu, M.; Wang, C. C.; Zhang, X. D.; Shi, B. J.; Fan, Y. B.; Cui, Y. G.; Li, Z.; Ren, K. L. Piezoelectric nanofibrous scaffolds as in vivo energy harvesters for modifying fibroblast alignment and proliferation in wound healing. Nano Energy 2018, 43, 63-71.
[15]
Zhao, M.; Song, B.; Pu, J.; Wada, T.; Reid, B.; Tai, G. P.; Wang, F.; Guo, A. H.; Walczysko, P.; Gu, Y. et al. Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-γ and PTEN. Nature 2006, 442, 457-460.
[16]
Huttenlocher, A.; Horwitz, A. R. Wound healing with electric potential. N. Engl. J. Med. 2007, 356, 303-304.
[17]
Zhao, M. Electrical fields in wound healing—An overriding signal that directs cell migration. Semin. Cell Dev. Biol. 2009, 20, 674-682.
[18]
Kloth, L. C. Electrical stimulation technologies for wound healing. Adv. Wound Care 2014, 3, 81-90.
[19]
Long, Y.; Wei, H.; Li, J.; Yao, G.; Yu, B.; Ni, D. L.; Gibson, A. L. F.; Lan, X. L.; Jiang, Y. D.; Cai, W. B. et al. Effective wound healing enabled by discrete alternative electric fields from wearable nanogenerators. ACS Nano 2018, 12, 12533-12540.
[20]
Kai, H.; Yamauchi, T.; Ogawa, Y.; Tsubota, A.; Magome, T.; Miyake, T.; Yamasaki, K.; Nishizawa, M. Accelerated wound healing on skin by electrical stimulation with a bioelectric plaster. Adv. Healthc. Mater. 2017, 6, 1700465.
[21]
Fan, F. R.; Tang, W.; Wang, Z. L. Flexible nanogenerators for energy harvesting and self-powered electronics. Adv. Mater. 2016, 28, 4283-4305.
[22]
Chang, C.; Tran, V. H.; Wang, J. B.; Fuh, Y. K.; Lin, L. W. Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 2010, 10, 726-731.
[23]
Li, M.; Jie, Y.; Shao, L. H.; Guo, Y. L.; Cao, X.; Wang, N.; Wang, Z. L. All-in-one cellulose based hybrid tribo/piezoelectric nanogenerator. Nano Res. 2019, 12, 1831-1835.
[24]
Parida, K.; Bhavanasi, V.; Kumar, V.; Bendi, R.; Lee, P. S. Self-powered pressure sensor for ultra-wide range pressure detection. Nano Res. 2017, 10, 3557-3570.
[25]
Persano, L.; Dagdeviren, C.; Su, Y. W.; Zhang, Y. H.; Girardo, S.; Pisignano, D.; Huang, Y. G.; Rogers, J. A. High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene). Nat. Commun. 2013, 4, 1633.
[26]
Yu, Y. H.; Sun, H. Y.; Orbay, H.; Chen, F.; England, C. G.; Cai, W. B.; Wang, X. D. Biocompatibility and in vivo operation of implantable mesoporous PVDF-based nanogenerators. Nano Energy 2016, 27, 275-281.
[27]
Amjadi, M.; Sheykhansari, S.; Nelson, B. J.; Sitti, M. Recent advances in wearable transdermal delivery systems. Adv. Mater. 2018, 30, 1704530.
[28]
Lu, N. S.; Lu, C.; Yang, S. X.; Rogers, J. Highly sensitive skin-mountable strain gauges based entirely on elastomers. Adv. Funct. Mater. 2012, 22, 4044-4050.
[29]
Griffin, D. R.; Weaver, W. M.; Scumpia, P. O.; Di Carlo, D.; Segura, T. Accelerated wound healing by injectable microporous gel scaffolds assembled from annealed building blocks. Nat. Mater. 2015, 14, 737-744.
[30]
Yu, Y.; Yuk, H.; Parada, G. A.; Wu, Y.; Liu, X. Y.; Nabzdyk, C. S.; Youcef-Toumi, K.; Zang, J. F.; Zhao, X. H. Multifunctional “hydrogel skins” on diverse polymers with arbitrary shapes. Adv. Mater. 2019, 31, 1807101.
[31]
Han, L.; Lu, X.; Liu, K. Z.; Wang, K. F.; Fang, L. M.; Weng, L. T.; Zhang, H. P.; Tang, Y. H.; Ren, F. Z.; Zhao, C. C. et al. Mussel-inspired adhesive and tough hydrogel based on nanoclay confined dopamine polymerization. ACS Nano 2017, 11, 2561-2574.
[32]
Liu, Y. L.; Ai, K. L.; Lu, L. H. Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields. Chem. Rev. 2014, 114, 5057-5115.
[33]
Han, L.; Yan, L. W.; Wang, M. H.; Wang, K. F.; Fang, L. M.; Zhou, J.; Fang, J.; Ren, F. Z.; Lu, X. Transparent, adhesive, and conductive hydrogel for soft bioelectronics based on light-transmitting polydopamine-doped polypyrrole nanofibrils. Chem. Mater. 2018, 30, 5561-5572.
[34]
Han, L.; Yan, L. W.; Wang, K. F.; Fang, L. M.; Zhang, H. P.; Tang, Y. H.; Ding, Y. H.; Weng, L. T.; Xu, J. L.; Weng, J. et al. Tough, self-healable and tissue-adhesive hydrogel with tunable multifunctionality. NPG Asia Mater. 2017, 9, e372.
[35]
Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B. Mussel-inspired surface chemistry for multifunctional coatings. Science 2007, 318, 426-430.
[36]
Ghobril, C.; Grinstaff, M. W. The chemistry and engineering of polymeric hydrogel adhesives for wound closure: A tutorial. Chem. Soc. Rev. 2015, 44, 1820-1835.
[37]
Gao, Y. J.; Du, H. Y.; Xie, Z. J.; Li, M. M.; Zhu, J. J.; Xu, J. W.; Zhang, L. B.; Tao, J.; Zhu, J. T. Self-adhesive photothermal hydrogel films for solar-light assisted wound healing. J. Mater. Chem. B 2019, 7, 3644-3651.
[38]
Guo, H. F.; Li, Z. S.; Dong, S. W.; Chen, W. J.; Deng, L.; Wang, Y. F.; Ying, D. J. Piezoelectric PU/PVDF electrospun scaffolds for wound healing applications. Colloids Surf. B 2012, 96, 29-36.
[39]
Xiao, J. S.; Zhu, Y. X.; Huddleston, S.; Li, P.; Xiao, B. X.; Farha, O. K.; Ameer, G. A. Copper metal-organic framework nanoparticles stabilized with folic acid improve wound healing in diabetes. ACS Nano 2018, 12, 1023-1032.
[40]
Wu, X.; Huang, W. M.; Wu, W. H.; Xue, B.; Xiang, D. F.; Li, Y.; Qin, M.; Sun, F.; Wang, W.; Zhang, W. B. et al. Reversible hydrogels with tunable mechanical properties for optically controlling cell migration. Nano Res. 2018, 11, 5556-5565.
[41]
Saito, J.; Furukawa, H.; Kurokawa, T.; Kuwabara, R.; Kuroda, S.; Hu, J.; Tanaka, Y.; Gong, J. P.; Kitamura, N.; Yasuda, K. Robust bonding and one-step facile synthesis of tough hydrogels with desirable shape by virtue of the double network structure. Polym. Chem. 2011, 2, 575-580.
[42]
Li, J.; Celiz, A. D.; Yang, J.; Yang, Q.; Wamala, I.; Whyte, W.; Seo, B. R.; Vasilyev, N. V.; Vlassak, J. J.; Suo, Z. et al. Tough adhesives for diverse wet surfaces. Science 2017, 357, 378-381.
[43]
Fang, J.; Niu, H. T.; Wang, H. X.; Wang, X. G.; Lin, T. Enhanced mechanical energy harvesting using needleless electrospun poly(vinylidene fluoride) nanofibre webs. Energy Environ. Sci. 2013, 6, 2196-2202.
[44]
Tashiro, K.; Kobayashi, M.; Tadokoro, H. Vibrational spectra and disorder-order transition of poly(vinylidene fluoride) form III. Macromolecules 1981, 14, 1757-1764.
[45]
Fang, J.; Wang, X. G.; Lin, T. Electrical power generator from randomly oriented electrospun poly(vinylidene fluoride) nanofibre membranes. J. Mater. Chem. 2011, 21, 11088-11091.
[46]
Wang, X. X.; Song, W. Z.; You, M. H.; Zhang, J.; Yu, M.; Fan, Z. Y.; Ramakrishna, S.; Long, Y. Z. Bionic single-electrode electronic skin unit based on piezoelectric nanogenerator. ACS Nano 2018, 12, 8588-8596.
[47]
Kang, S. B.; Won, S. H.; Im, M. J.; Kim, C. U.; Park, W. I.; Baik, J. M.; Choi, K. J. Enhanced piezoresponse of highly aligned electrospun poly(vinylidene fluoride) nanofibers. Nanotechnology 2017, 28, 395402.
[48]
Ico, G.; Showalter, A.; Bosze, W.; Gott, S. C.; Kim, B. S.; Rao, M. P.; Myung, N. V.; Nam, J. Size-dependent piezoelectric and mechanical properties of electrospun P(VDF-TrFE) nanofibers for enhanced energy harvesting. J. Mater. Chem. A 2016, 4, 2293-2304.
[49]
Persano, L.; Dagdeviren, C.; Maruccio, C.; De Lorenzis, L.; Pisignano, D. Cooperativity in the enhanced piezoelectric response of polymer nanowires. Adv. Mater. 2014, 26, 7574-7580.
[50]
Yan, J.; Liu, M.; Jeong, Y. G.; Kang, W. M.; Li, L.; Zhao, Y. X.; Deng, N. P.; Cheng, B. W.; Yang, G. Performance enhancements in poly(vinylidene fluoride)-based piezoelectric nanogenerators for efficient energy harvesting. Nano Energy 2019, 56, 662-692.
[51]
Zhang, L. L.; Gui, J. Z.; Wu, Z. Z.; Li, R.; Wang, Y.; Gong, Z. Y.; Zhao, X. Z.; Sun, C. L.; Guo, S. S. Enhanced performance of piezoelectric nanogenerator based on aligned nanofibers and three-dimensional interdigital electrodes. Nano Energy 2019, 65, 103924.
[52]
Hofmann, A.; Ritz, U.; Verrier, S.; Eglin, D.; Alini, M.; Fuchs, S.; Kirkpatrick, C. J.; Rommens, P. M. The effect of human osteoblasts on proliferation and neo-vessel formation of human umbilical vein endothelial cells in a long-term 3D co-culture on polyurethane scaffolds. Biomaterials 2008, 29, 4217-4226.
Nano Research
Pages 2525-2533
Cite this article:
Du S, Zhou N, Gao Y, et al. Bioinspired hybrid patches with self-adhesive hydrogel and piezoelectric nanogenerator for promoting skin wound healing. Nano Research, 2020, 13(9): 2525-2533. https://doi.org/10.1007/s12274-020-2891-9
Topics:

1158

Views

131

Crossref

N/A

Web of Science

127

Scopus

7

CSCD

Altmetrics

Received: 01 March 2020
Revised: 19 May 2020
Accepted: 21 May 2020
Published: 25 June 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return