AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Structurally and chemically compatible BiInSe3 substrate for topological insulator thin films

Xiong Yao1Jisoo Moon2Sang-Wook Cheong1Seongshik Oh1( )
Center for Quantum Materials Synthesis and Department of Physics & Astronomy, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
Department of Physics & Astronomy, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
Show Author Information

Graphical Abstract

Abstract

Quality of epitaxial films strongly depends on their structural and chemical match with the substrates: The more closely they match, the better the film quality is. Topological insulators (TI) such as Bi2Se3 thin films are of no exception. However, there do not exist commercial substrates that match with TI films both structurally and chemically, at the level commonly available for other electronic materials. Here, we introduce BiInSe3 bulk crystal as the best substrate for Bi2Se3 thin films. These films exhibit superior surface morphology, lower defect density and higher Hall mobility than those on other substrates, due to structural and chemical match provided by the BiInSe3 substrate. BiInSe3 substrate could accelerate the advance of TI research and applications.

References

[1]
Chang, C. Z.; Zhang, J. S.; Feng, X.; Shen, J.; Zhang, Z. C.; Guo, M. H.; Li, K.; Ou, Y. B.; Wei, P.; Wang, L. L. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 2013, 340, 167-170.
[2]
Checkelsky, J. G.; Yoshimi, R.; Tsukazaki, A.; Takahashi, K. S.; Kozuka, Y.; Falson, J.; Kawasaki, M.; Tokura, Y. Trajectory of the anomalous Hall effect towards the quantized state in a ferromagnetic topological insulator. Nat. Phys. 2014, 10, 731-736.
[3]
Kou, X. F.; Guo, S. T.; Fan, Y. B.; Pan, L.; Lang, M. R.; Jiang, Y.; Shao, Q. M.; Nie, T. X.; Murata, K.; Tang, J. S. et al. Scale-invariant quantum anomalous Hall effect in magnetic topological insulators beyond the two-dimensional limit. Phys. Rev. Lett. 2014, 113, 137201.
[4]
Yoshimi, R.; Tsukazaki, A.; Kozuka, Y.; Falson, J.; Takahashi, K. S.; Checkelsky, J. G.; Nagaosa, N.; Kawasaki, M.; Tokura, Y. Quantum Hall effect on top and bottom surface states of topological insulator (Bi1-xSbx)2Te3 films. Nat. Commun. 2015, 6, 6627.
[5]
Xu, Y.; Miotkowski, I.; Liu, C.; Tian, J. F.; Nam, H.; Alidoust, N.; Hu, J. N.; Shih, C. K.; Hasan, M. Z.; Chen, Y. P. Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator. Nat. Phys. 2014, 10, 956-963.
[6]
Xu, Y.; Miotkowski, I.; Chen, Y. P. Quantum transport of two-species Dirac fermions in dual-gated three-dimensional topological insulators. Nat. Commun. 2016, 7, 11434.
[7]
Koirala, N.; Brahlek, M.; Salehi, M.; Wu, L.; Dai, J. X.; Waugh, J.; Nummy, T.; Han, M. G.; Moon, J.; Zhu, Y. M. et al. Record surface state mobility and quantum Hall effect in topological insulator thin films via interface engineering. Nano Lett. 2015, 15, 8245-8249.
[8]
Moon, J.; Koirala, N.; Salehi, M.; Zhang, W. H.; Wu, W. D.; Oh, S. Solution to the hole-doping problem and tunable quantum Hall effect in Bi2Se3 thin films. Nano Lett. 2018, 18, 820-826.
[9]
Salehi, M.; Shapourian, H.; Rosen, I. T.; Han, M. G.; Moon, J.; Shibayev, P.; Jain, D.; Goldhaber-Gordon, D.; Oh, S. Quantum-Hall to insulator transition in ultra-low-carrier-density topological insulator films and a hidden phase of the zeroth Landau level. Adv. Mater. 2019, 31, 1901091.
[10]
Koirala, N.; Salehi, M.; Moon, J.; Oh, S. Gate-tunable quantum Hall effects in defect-suppressed Bi2Se3 films. Phys. Rev. B 2019, 100, 085404.
[11]
Fei, F. C.; Zhang, S.; Zhang, M. H.; Shah, S. A.; Song, F. Q.; Wang, X. F.; Wang, B. G. The material efforts for quantized hall devices based on topological insulators. Adv. Mater. 2019, 1904593.
[12]
Mogi, M.; Kawamura, M.; Tsukazaki, A.; Yoshimi, R.; Takahashi, K. S.; Kawasaki, M.; Tokura, Y. Tailoring tricolor structure of magnetic topological insulator for robust axion insulator. Sci. Adv. 2017, 3, eaao1669.
[13]
Mogi, M.; Kawamura, M.; Yoshimi, R.; Tsukazaki, A.; Kozuka, Y.; Shirakawa, N.; Takahashi, K. S.; Kawasaki, M.; Tokura, Y. A magnetic heterostructure of topological insulators as a candidate for an axion insulator. Nat. Mater. 2017, 16, 516-521.
[14]
Xiao, D.; Jiang, J.; Shin, J. H.; Wang, W. B.; Wang, F.; Zhao, Y. F.; Liu, C. X.; Wu, W. D.; Chan, M. H. W.; Samarth, N. et al. Realization of the axion insulator state in quantum anomalous Hall sandwich heterostructures. Phys. Rev. Lett. 2018, 120, 056801.
[15]
Wu, L.; Salehi, M.; Koirala, N.; Moon, J.; Oh, S.; Armitage, N. P. Quantized Faraday and Kerr rotation and axion electrodynamics of a 3D topological insulator. Science 2016, 354, 1124-1127.
[16]
Yoshida, S.; Misawa, S.; Gonda, S. Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using AlN-coated sapphire substrates. Appl. Phys. Lett. 1983, 42, 427-429.
[17]
Amano, H.; Sawaki, N.; Akasaki, I.; Toyoda, Y. Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer. Appl. Phys. Lett. 1986, 48, 353-355.
[18]
Nakamura, S. GaN growth using GaN buffer layer. Jpn. J. Appl. Phys. 1991, 30, L1705-L1707.
[19]
Li, G. Q.; Wang, W. L.; Yang, W. J.; Lin, Y. H.; Wang, H. Y.; Lin, Z. T.; Zhou, S. Z. GaN-based light-emitting diodes on various substrates: A critical review. Rep. Prog. Phys. 2016, 79, 056501.
[20]
Tang, C.; Chang, C. Z.; Zhao, G. J.; Liu, Y. W.; Jiang, Z. L.; Liu, C. X.; McCartney, M. R.; Smith, D. J.; Chen, T. Y.; Moodera, J. S. et al. Above 400-K robust perpendicular ferromagnetic phase in a topological insulator. Sci. Adv. 2017, 3, e1700307.
[21]
Yao, X.; Gao, B.; Han, M. G.; Jain, D.; Moon, J.; Kim, J. W.; Zhu, Y. M.; Cheong, S. W.; Oh, S. Record high-proximity-induced anomalous hall effect in (BixSb1-x)2Te3 thin film grown on CrGeTe3 substrate. Nano Lett. 2019, 19, 4567-4573.
[22]
Bansal, N.; Koirala, N.; Brahlek, M.; Han, M. G.; Zhu, Y. M.; Cao, Y.; Waugh, J.; Dessau, D. S.; Oh, S. Robust topological surface states of Bi2Se3 thin films on amorphous SiO2/Si substrate and a large ambipolar gating effect. Appl. Phys. Lett. 2014, 104, 241606.
[23]
Guo, X.; Xu, Z. J.; Liu, H. C.; Zhao, B.; Dai, X. Q.; He, H. T.; Wang, J. N.; Liu, H. J.; Ho, W. K.; Xie, M. H. Single domain Bi2Se3 films grown on InP(111) A by molecular-beam epitaxy. Appl. Phys. Lett. 2013, 102, 151604.
[24]
Kou, X. F.; He, L.; Xiu, F. X.; Lang, M. R.; Liao, Z. M.; Wang, Y.; Fedorov, A. V.; Yu, X. X.; Tang, J. S.; Huang, G. et al. Epitaxial growth of high mobility Bi2Se3 thin films on CdS. Appl. Phys. Lett. 2011, 98, 242102.
[25]
Bonell, F.; Cuxart, M. G.; Song, K.; Robles, R.; Ordejón, P.; Roche, S.; Mugarza, A.; Valenzuela, S. O. Growth of twin-free and low-doped topological insulators on BaF2(111). Cryst. Growth Des. 2017, 17, 4655-4660.
[26]
Richardella, A.; Kandala, A.; Lee, J. S.; Samarth, N. Characterizing the structure of topological insulator thin films. APL Mater. 2015, 3, 083303.
27]
Tarakina, N. V.; Schreyeck, S.; Luysberg, M.; Grauer, S.; Schumacher, C.; Karczewski, G.; Brunner, K.; Gould, C.; Buhmann, H.; Dunin-Borkowski, R. E. et al. Suppressing twin formation in Bi2Se3 thin films. Adv. Mater. Interfaces 2014, 1, 1400134.
[28]
Reifsnyder Hickey, D.; Azadani, J. G.; Richardella, A. R.; Kally, J. C.; Lee, J. S.; Chang, H.; Liu, T.; Wu, M. Z.; Samarth, N.; Low, T. et al. Structure and basal twinning of topological insulator Bi2Se3 grown by MBE onto crystalline Y3Fe5O12. Phys. Rev. Mater. 2019, 3, 061201.
[29]
Tarakina, N. V.; Schreyeck, S.; Borzenko, T.; Schumacher, C.; Karczewski, G.; Brunner, K.; Gould, C.; Buhmann, H.; Molenkamp, L. W. Comparative study of the microstructure of Bi2Se3 thin films grown on Si(111) and InP(111) substrates. Cryst. Growth Des. 2012, 12, 1913-1918.
[30]
Brahlek, M.; Bansal, N.; Koirala, N.; Xu, S. Y.; Neupane, M.; Liu, C.; Hasan, M. Z.; Oh, S. Topological-metal to band-insulator transition in (Bi1-xInx)2Se3 thin films. Phys. Rev. Lett. 2012, 109, 186403.
[31]
Lang, M. R.; He, L.; Xiu, F. X.; Yu, X. X.; Tang, J. S.; Wang, Y.; Kou, X. F.; Jiang, W. J.; Fedorov, A. V.; Wang, K. L. Revelation of topological surface states in Bi2Se3 thin films by in situ Al passivation. ACS Nano 2012, 6, 295-302.
[32]
Taskin, A. A.; Sasaki, S.; Segawa, K.; Ando, Y. Achieving surface quantum oscillations in topological insulator thin films of Bi2Se3. Adv. Mater. 2012, 24, 5581-5585.
[33]
Syed, S.; Manfra, M. J.; Wang, Y. J.; Molnar, R. J.; Stormer, H. L. Electron scattering in AlGaN/GaN structures. Appl. Phys. Lett. 2004, 84, 1507-1509.
[34]
Adam, S.; Hwang, E. H.; Das Sarma, S. Two-dimensional transport and screening in topological insulator surface states. Phys. Rev. B 2012, 85, 235413.
[35]
Fan, Y. B.; Upadhyaya, P.; Kou, X. F.; Lang, M. R.; Takei, S.; Wang, Z. X.; Tang, J. S.; He, L.; Chang, L. T.; Montazeri, M. et al. Magnetization switching through giant spin-orbit torque in a magnetically doped topological insulator heterostructure. Nat. Mater. 2014, 13, 699-704.
[36]
Wang, Y.; Deorani, P.; Banerjee, K.; Koirala, N.; Brahlek, M.; Oh, S.; Yang, H. Topological surface states originated spin-orbit torques in Bi2Se3. Phys. Rev. Lett. 2015, 114, 257202.
[37]
Fan, Y. B.; Kou, X. F.; Upadhyaya, P.; Shao, Q. M.; Pan, L.; Lang, M. R.; Che, X. Y.; Tang, J. S.; Montazeri, M.; Murata, K. et al. Electric-field control of spin-orbit torque in a magnetically doped topological insulator. Nat. Nanotechnol. 2016, 11, 352-359.
[38]
Han, J. H.; Richardella, A.; Siddiqui, S. A.; Finley, J.; Samarth, N.; Liu, L. Q. Room-temperature spin-orbit torque switching induced by a topological insulator. Phys. Rev. Lett. 2017, 119, 077702.
Nano Research
Pages 2541-2545
Cite this article:
Yao X, Moon J, Cheong S-W, et al. Structurally and chemically compatible BiInSe3 substrate for topological insulator thin films. Nano Research, 2020, 13(9): 2541-2545. https://doi.org/10.1007/s12274-020-2894-6
Topics:

770

Views

10

Crossref

N/A

Web of Science

10

Scopus

1

CSCD

Altmetrics

Received: 24 January 2020
Revised: 20 May 2020
Accepted: 21 May 2020
Published: 22 June 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return