AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Polarity-activated super-resolution imaging probe for the formation and morphology of amyloid fibrils

Zheng Lv1,2,§Li Li1,§Zhongwei Man1Zhenzhen Xu1( )Hongtu Cui3Rui Zhan3Qihua He3Lemin Zheng3,4 ( )Hongbing Fu1,2( )
Beijing Key Laboratory for Optical Materials and Photonic Devices, Capital Normal University, Beijing 100048, China
Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Institute of Molecular Plus, Tianjin University, Tianjin 300072, China
The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Health Science Center, Peking University, Beijing 100191, China
China National Clinical Research Center for Neurological Diseases, Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, The Capital Medical University, Beijing 100050, China

§ Zheng Lv and Li Li contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

The formation of amyloid plaques usually occurs in the early-stage of Alzheimer’s disease (AD). Stimulated emission depletion (STED) imaging provided a powerful tool for visualizing amyloid structures on the nanometer scale. However, many commercial probes adopted in detecting amyloid fibrils are inapplicable to STED imaging, owing to their unmatched absorption and emission wavelengths, small Stokes’ shift, easy photo-bleaching, etc. Herein, we demonstrated a polarity-activated STED probe based on an intramolecular charge transfer donor (D)-π-acceptor (A) compound. The electron-rich carbazole group and the electron-poor pyridinium bromide group, linked by π-conjugated thiophen-bridge, ensure strong near infrared (NIR) emission with a Stokes’ shift larger than 200 nm. The tiny change in polarity before and after binding with amyloid plaques leads to a transition from weakly emission charge-transfer (CT) state (Φ < 0.04) to highly emissive locally-excited (LE) state (Φ = 0.57), giving rise to a fluorescence Turn-On probe. Together with large Stokes’ shift, good photostability and high depletion efficiency, the super-resolution imaging of the formation and morphology of amyloid fibrils in vitro based on this probe was realized with a lateral spatial resolution better than 33 nm at an extremely low depletion power. Moreover, the ex-vivo super-resolution imaging of (E)-1-butyl-4(2-(5-(9-ethyl-9H-carbazol-3-yl)thiophen-2-yl)vinyl) pyridinium bromide (CTPB) probe in Aβ plaques in the brain slices of a Tg mouse was demonstrated. This research provides a demonstration of the super resolution imaging probe of amyloid fibrils based on polarity-response mechanism, providing a new approach to the development of future amyloid probes.

Electronic Supplementary Material

Download File(s)
12274_2020_2899_MOESM1_ESM.pdf (3.1 MB)

References

[1]
Selkoe, D. J. Correction: Corrigendum: Resolving controversies on the path to Alzheimer’s therapeutics. Nat. Med. 2011, 17, 1693.
[2]
Masters, C. L.; Simms, G.; Weinman, N. A.; Multhaup, G.; McDonald, B. L.; Beyreuther, K. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc. Natl. Acad. Sci. USA 1985, 82, 4245-4249.
[3]
Morris, K.; Serpell, L. From natural to designer self-assembling biopolymers, the structural characterisation of fibrous proteins & peptides using fibre diffraction. Chem. Soc. Rev. 2010, 39, 3445-3453.
[4]
Hardy, J.; Selkoe, D. J. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science 2002, 297, 353-356.
[5]
Domike, K. R.; Donald, A. M. Thermal dependence of thermally induced protein spherulite formation and growth: Kinetics of β-lactoglobulin and insulin. Biomacromolecules 2007, 8, 3930-3937.
[6]
Rubin, N.; Perugia, E.; Goldschmidt, M.; Fridkin, M.; Addadi, L. Chirality of amyloid suprastructures. J. Am. Chem. Soc. 2008, 130, 4602-4603.
[7]
Rodríguez-Rodríguez, C.; Rimola, A.; Rodríguez-Santiago, L.; Ugliengo, P.; Álvarez-Larena, Á.; Gutiérrez-de-Terán, H.; Sodupe, M.; González-Duarte, P. Crystal structure of thioflavin-T and its binding to amyloid fibrils: Insights at the molecular level. Chem. Commun. 2010, 46, 1156-1158.
[8]
Yang, Q. L.; Ma, Z. R.; Wang, H. S.; Zhou, B.; Zhu, S. J.; Zhong, Y. T.; Wang, J. Y.; Wan, H.; Antaris, A.; Ma, R. et al. Rational design of molecular fluorophores for biological imaging in the NIR-II window. Adv. Mater. 2017, 29, 1605497.
[9]
Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission: Together we shine, united we soar! Chem. Rev. 2015, 115, 11718-11940.
[10]
Guo, Z. Q.; Park, S.; Yoon, J.; Shin, I. Recent progress in the development of near-infrared fluorescent probes for bioimaging applications. Chem. Soc. Rev. 2014, 43, 16-29.
[11]
Wang, Y. L.; Fan, C.; Xin, B.; Zhang, J. P.; Luo, T.; Chen, Z. Q.; Zhou, Q. Y.; Yu, Q.; Li, X. N.; Huang, Z. L. et al. AIE-based super-resolution imaging probes for β-amyloid plaques in mouse brains. Mater. Chem. Front. 2018, 2, 1554-1562.
[12]
Li, D. Y.; Qin, W.; Xu, B.; Qian, J.; Tang, B. Z. AIE nanoparticles with high stimulated emission depletion efficiency and photobleaching resistance for long-term super-resolution bioimaging. Adv. Mater. 2017, 29, 1703643.
[13]
Liu, Y. J.; Lu, Y. Q.; Yang, X. S.; Zheng, X. L.; Wen, S. H.; Wang, F.; Vidal, X.; Zhao, J. B.; Liu, D. M.; Zhou, Z. G. et al. Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy. Nature 2017, 543, 229-233.
[14]
Vicidomini, G.; Bianchini, P.; Diaspro, A. STED super-resolved microscopy. Nat. Methods 2018, 15, 173-182.
[15]
Wang, L.; Frei, M. S.; Salim, A.; Johnsson, K. Small-molecule fluorescent probes for live-cell super-resolution microscopy. J. Am. Chem. Soc. 2019, 141, 2770-2781.
[16]
Zhang, T.; Li, S. P.; Du, Y.; He, T.; Shen, Y. B.; Bai, C.; Huang, Y. J.; Zhou, X. C. Revealing the activity distribution of a single nanocatalyst by locating single nanobubbles with super-resolution microscopy. J. Phys. Chem. Lett. 2018, 9, 5630-5635.
[17]
Wang, H. H.; Zhang, T.; Zhou, X. C. Dark-field spectroscopy: Development, applications and perspectives in single nanoparticle catalysis. J. Phys. Condens. Matter 2019, 31, 473001.
[18]
Groenning, M. Binding mode of Thioflavin T and other molecular probes in the context of amyloid fibrils-current status. J. Chem. Biol. 2010, 3, 1-18.
[19]
Younan, N. D.; Viles, J. H. A comparison of three fluorophores for the detection of amyloid fibers and prefibrillar oligomeric assemblies. ThT (Thioflavin T); ANS (1-anilinonaphthalene-8-sulfonic acid); and bisANS (4,4’-dianilino-1,1’-binaphthyl-5,5’-disulfonic acid). Biochemistry 2015, 54, 4297-4306.
[20]
Hintersteiner, M.; Enz, A.; Frey, P.; Jaton, A. L.; Kinzy, W.; Kneuer, R.; Neumann, U.; Rudin, M.; Staufenbiel, M.; Stoeckli, M. et al. In vivo detection of amyloid-β deposits by near-infrared imaging using an oxazine-derivative probe. Nat. Biotechnol. 2005, 23, 577-583.
[21]
Hsu, J. C. C.; Chen, E. H. L.; Snoeberger, R. C.; Luh, F. Y.; Lim, T. S.; Hsu, C. P.; Chen, R. P. Y. Thioflavin T and its photoirradiative derivatives: Exploring their spectroscopic properties in the absence and presence of amyloid fibrils. J. Phys. Chem. B 2013, 117, 3459-3468.
[22]
Qi, J.; Sun, C. W.; Zebibula, A.; Zhang, H. Q.; Kwok, R. T. K.; Zhao, X. Y.; Xi, W.; Lam, J. W. Y.; Qian, J.; Tang, B. Z. Real-time and high-resolution bioimaging with bright aggregation-induced emission dots in short-wave infrared region. Adv. Mater. 2018, 30, 1706856.
[23]
Zhang, W.; Wen, Y.; He, D. X.; Wang, Y. F.; Liu, X. L.; Li, C.; Liang, X. J. Near-infrared AIEgens as transformers to enhance tumor treatment efficacy with controllable self-assembled redox-responsive carrier-free nanodrug. Biomaterials 2019, 193, 12-21.
[24]
Fu, W.; Yan, C. X.; Guo, Z. Q.; Zhang, J. J.; Zhang, H. Y.; Tian, H.; Zhu, W. H. Rational design of near-infrared aggregation-induced-emission-active probes: In situ mapping of amyloid-β plaques with ultrasensitivity and high-fidelity. J. Am. Chem. Soc. 2019, 141, 3171-3177.
[25]
Xu, Y. Z.; Zhang, H. K.; Zhang, N.; Wang, X. C.; Dang, D. F.; Jing, X. N.; Xi, D.; Hao, Y.; Tang, B. Z.; Meng, L. J. Deep-red fluorescent organic nanoparticles with high brightness and photostability for super-resolution in vitro and in vivo imaging using STED nanoscopy. ACS Appl. Mater. Interfaces 2020, 12, 6814-6826.
[26]
Jiang, N.; Fan, J. L.; Xu, F.; Peng, X. J.; Mu, H. Y.; Wang, J. Y.; Xiong, X. Q. Ratiometric fluorescence imaging of cellular polarity: Decrease in mitochondrial polarity in cancer cells. Angew. Chem., Int. Ed. 2015, 54, 2510-2514.
[27]
Powers, E. T.; Morimoto, R. I.; Dillin, A.; Kelly, J. W.; Balch, W. E. Biological and chemical approaches to diseases of proteostasis deficiency. Annu. Rev. Biochem. 2009, 78, 959-991.
[28]
Suppan, P. Solvent effects on energy of electronic transitions-experimental observations and applications to structural problems of excited molecules. J. Chem. Soc. A. Inorg. Phys. Theor. 1968, 3125-3133.
[29]
Szczupak, B.; Ryder, A. G.; Togashi, D. M.; Klymchenko, A. S.; Rochev, Y. A.; Gorelov, A.; Glynn, T. J. Polarity assessment of thermoresponsive poly(NIPAM-co-NtBA) copolymer films using fluorescence methods. J. Fluoresc. 2010, 20, 719-731.
[30]
Heo, C. H.; Sarkar, A. R.; Baik, S. H.; Jung, T. S.; Kim, J. J.; Kang, H.; Mook-Jung, I.; Kim, H. M. A quadrupolar two-photon fluorescent probe for in vivo imaging of amyloid-β plaques. Chem. Sci. 2016, 7, 4600-4606.
[31]
Mishra, R.; Sjölander, D.; Hammarström, P. Spectroscopic characterization of diverse amyloid fibrils in vitro by the fluorescent dyeNile red. Mol. Biosyst. 2011, 7, 1232-1240.
[32]
Sackett, D. L.; Wolff, J. Nile red as a polarity-sensitive fluorescent probe of hydrophobic protein surfaces. Anal. Biochem. 1987, 167, 228-234.
[33]
Sharonov, A.; Hochstrasser, R. M. Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proc. Natl. Acad. Sci. USA 2006, 103, 18911-18916.
[34]
Zhou, K. X.; Yuan, C.; Dai, B.; Wang, K.; Chen, Y. M.; Ma, D. L.; Dai, J. P.; Liang, Y.; Tan, H. W.; Cui, M. C. Environment-sensitive near-infrared probe for fluorescent discrimination of aβ and tau fibrils in AD brain. J. Med. Chem. 2019, 62, 6694-6704.
[35]
Lee, J. E.; Sang, J. C.; Rodrigues, M.; Carr, A. R.; Horrocks, M. H.; De, S. M.; Bongiovanni, M. N.; Flagmeier, P.; Dobson, C. M.; Wales, D. J. et al. Mapping surface hydrophobicity of α-synuclein oligomers at the nanoscale. Nano Lett. 2018, 18, 7494-7501.
[36]
Grabowski, Z. R.; Rotkiewicz, K.; Rettig, W. Structural changes accompanying intramolecular electron transfer: Focus on twisted intramolecular charge-transfer states and structures. Chem. Rev. 2003, 103, 3899-4032.
[37]
Hong, Y. N.; Meng, L. M.; Chen, S. J.; Leung, C. W. T.; Da, L. T.; Faisal, M.; Silva, D. A.; Liu, J. Z.; Lam, J. W. Y.; Huang, X. H. et al. Monitoring and inhibition of insulin fibrillation by a small organic fluorogen with aggregation-induced emission characteristics. J. Am. Chem. Soc. 2012, 134, 1680-1689.
[38]
Spehar, K.; Ding, T. B.; Sun, Y. Z.; Kedia, N.; Lu, J.; Nahass, G. R.; Lew, M. D.; Bieschke, J. Super-resolution imaging of amyloid structures over extended times by using transient binding of single thioflavin t molecules. Chembiochem 2018, 19, 1944-1948.
[39]
Biancalana, M.; Koide, S. Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochim. Biophys. Acta 2010, 1804, 1405-1412.
[40]
Batzli, K. M.; Love, B. J. Agitation of amyloid proteins to speed aggregation measured by ThT fluorescence: A call for standardization. Mater. Sci. Eng. C 2015, 48, 359-364.
[41]
Greenwald, J.; Riek, R. Biology of amyloid: Structure, function, and regulation. Structure 2010, 18, 1244-1260.
[42]
Guo, S. L.; Akhremitchev, B. B. Packing density and structural heterogeneity of insulin amyloid fibrils measured by AFM nanoindentation. Biomacromolecules 2006, 7, 1630-1636.
[43]
Koffie, R. M.; Meyer-Luehmann, M.; Hashimoto, T.; Adams, K. W.; Mielke, M. L.; Garcia-Alloza, M.; Micheva, K. D.; Smith, S. J.; Kim, M. L.; Lee, V. M. et al. Oligomeric amyloid β associates with postsynaptic densities and correlates with excitatory synapse loss near senile plaques. Proc. Natl. Acad. Sci. USA 2009, 106, 4012-4017.
[44]
Varongchayakul, N.; Johnson, S.; Quabili, T.; Cappello, J.; Ghandehari, H.; de Jesus Solares, S.; Hwang, W.; Seog, J. Direct observation of amyloid nucleation under nanomechanical stretching. ACS Nano 2013, 7, 7734-7743.
[45]
Ries, J.; Udayar, V.; Soragni, A.; Hornemann, S.; Nilsson, K. P. R.; Riek, R.; Hock, C.; Ewers, H.; Aguzzi, A. A.; Rajendran, L. Superresolution imaging of amyloid fibrils with binding-activated probes. ACS Chem. Neurosci. 2013, 4, 1057-1061.
[46]
Kaminski Schierle, G. S.; van de Linde, S.; Erdelyi, M.; Esbjörner, E. K.; Klein, T.; Rees, E.; Bertoncini, C. W.; Dobson, C. M.; Sauer, M.; Kaminski, C. F. In situ measurements of the formation and morphology of intracellular β-amyloid fibrils by super-resolution fluorescence imaging. J. Am. Chem. Soc. 2011, 133, 12902-12905.
[47]
Cui, M. C.; Ono, M.; Watanabe, H.; Kimura, H.; Liu, B.; Saji, H. Smart near-infrared fluorescence probes with donor-acceptor structure for in vivo detection of β-amyloid deposits. J. Am. Chem. Soc. 2014, 136, 3388-3394.
Nano Research
Pages 2556-2563
Cite this article:
Lv Z, Li L, Man Z, et al. Polarity-activated super-resolution imaging probe for the formation and morphology of amyloid fibrils. Nano Research, 2020, 13(9): 2556-2563. https://doi.org/10.1007/s12274-020-2899-1
Topics:

794

Views

13

Crossref

N/A

Web of Science

12

Scopus

0

CSCD

Altmetrics

Received: 26 March 2020
Revised: 21 May 2020
Accepted: 22 May 2020
Published: 25 June 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return