AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Morphology-controlled transformation of Cu@Au core-shell nanowires into thermally stable Cu3Au intermetallic nanowires

Zhiqiang Niu1,3,§Shouping Chen2,4,§Yi Yu5Teng Lei1Ahmad Dehestani3Kerstin Schierle-Arndt3Peidong Yang1,2,3,4,6( )
Department of Chemistry, University of California, Berkeley, California 94720, USA
Department of Materials Science and Engineering, University of California, Berkeley, California 94720, USA
California Research Alliance (CARA), BASF Corporation, Berkeley, California 94720, USA
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
Kavli Energy NanoScience Institute, Berkeley, California 94720, USA

§ Zhiqiang Niu and Shouping Chen contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Multimetallic nanowires with long-range atomic ordering hold the promise of unique physicochemical properties in many applications. Here we demonstrate the synthesis and study the stability of Cu3Au intermetallic nanowires. The synthesis is achieved by using Cu@Au core-shell nanowires as precursors. With appropriate Cu/Au stoichiometry, the Cu@Au core-shell nanowires are transformed into fully ordered Cu3Au nanowires under thermal annealing. Thermally-driven atom diffusion accounts for this transformation as revealed by X-ray diffraction and electron microscopy studies. The twin boundaries abundant in the Cu@Au core-shell nanowires facilitate the ordering process. The resulting Cu3Au intermetallic nanowires have uniform and accurate atomic positioning in the crystal lattice, which enhances the nobility of Cu. No obvious copper oxides are observed in fully ordered Cu3Au nanowires after annealing in air at 200 oC, a temperature that is much higher than those observed in Cu@Au core-shell and pure Cu nanowires. This work opens up an opportunity for further research into the development and applications of intermetallic nanowires.

Electronic Supplementary Material

Download File(s)
12274_2020_2900_MOESM1_ESM.pdf (2.9 MB)

References

[1]
Chen, P. C.; Liu, X. L.; Hedrick, J. L.; Xie, Z.; Wang, S. Z.; Lin, Q. Y.; Hersam, M. C.; Dravid, V. P.; Mirkin, C. A. Polyelemental nanoparticle libraries. Science 2016, 352, 1565-1569.
[2]
Yao, Y. G.; Huang, Z. N.; Xie, P. F.; Lacey, S. D.; Jacob, R. J.; Xie, H.; Chen, F. J.; Nie, A. M.; Pu, T. C.; Rehwoldt, M. et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 2018, 359, 1489-1494.
[3]
Cortie, M. B.; McDonagh, A. M. Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles. Chem. Rev. 2011, 111, 3713-3735.
[4]
Casado-Rivera, E.; Volpe, D. J.; Alden, L.; Lind, C.; Downie, C.; Vázquez-Alvarez, T.; Angelo, A. C. D.; DiSalvo, F. J.; Abruna, H. D. Electrocatalytic activity of ordered intermetallic phases for fuel cell applications. J. Am. Chem. Soc. 2004, 126, 4043-4049.
[5]
Niu, Z. Q.; Becknell, N.; Yu, Y.; Kim, D.; Chen, C.; Kornienko, N.; Somorjai, G. A.; Yang, P. D. Anisotropic phase segregation and migration of Pt in nanocrystals en route to nanoframe catalysts. Nat. Mater. 2016, 15, 1188-1194.
[6]
Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339-1343.
[7]
Rößner, L.; Armbrüster, M. Electrochemical energy conversion on intermetallic compounds: A review. ACS Catal. 2019, 9, 2018-2062.
[8]
Escudero-Escribano, M.; Verdaguer-Casadevall, A.; Malacrida, P.; Grønbjerg, U.; Knudsen, B. P.; Jepsen, A. K.; Rossmeisl, J.; Stephens, I. E. L.; Chorkendorff, I. Pt5Gd as a highly active and stable catalyst for oxygen electroreduction. J. Am. Chem. Soc. 2012, 134, 16476-16479.
[9]
Wang, D. L.; Xin, H. L.; Hovden, R.; Wang, H. S.; Yu, Y. C.; Muller, D. A.; DiSalvo, F. J.; Abruña, H. D. Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 2013, 12, 81-87.
[10]
Yan, Y. C.; Du, J. S.; Gilroy, K. D.; Yang, D. R.; Xia, Y. N.; Zhang, H. Intermetallic nanocrystals: Syntheses and catalytic applications. Adv. Mater. 2017, 29, 1605997.
[11]
Xiong, Y.; Yang, Y.; DiSalvo, F. J.; Abruña, H. D. Pt-decorated composition-tunable Pd-Fe@Pd/C core-shell nanoparticles with enhanced electrocatalytic activity towards the oxygen reduction reaction. J. Am. Chem. Soc. 2018, 140, 7248-7255.
[12]
Bauer, J. C.; Chen, X. L.; Liu, Q. S.; Phan, T. H.; Schaak, R. E. Converting nanocrystalline metals into alloys and intermetallic compounds for applications in catalysis. J. Mater. Chem. 2008, 18, 275-282.
[13]
Wang, C. Y.; Chen, D. P.; Sang, X. H.; Unocic, R. R.; Skrabalak, S. E. Size-dependent disorder-order transformation in the synthesis of monodisperse intermetallic PdCu nanocatalysts. ACS Nano 2016, 10, 6345-6353.
[14]
Lu, N.; Wang, J. G.; Xie, S. F.; Xia, Y. N.; Kim, M. J. Enhanced shape stability of Pd-Rh core-frame nanocubes at elevated temperature: In situ heating transmission electron microscopy. Chem. Commun. 2013, 49, 11806-11808.
[15]
Li, J. R.; Xi, Z.; Pan, Y. T.; Spendelow, J. S.; Duchesne, P. N.; Su, D.; Li, Q.; Yu, C.; Yin, Z. Y.; Shen, B. et al. Fe stabilization by intermetallic L10-FePt and Pt catalysis enhancement in L10-FePt/Pt nanoparticles for efficient oxygen reduction reaction in fuel cells. J. Am. Chem. Soc. 2018, 140, 2926-2932.
[16]
Maligal-Ganesh, R. V.; Xiao, C. X.; Goh, T. W.; Wang, L. L.; Gustafson, J.; Pei, Y. C.; Qi, Z. Y.; Johnson, D. D.; Zhang, S. R.; Tao, F. et al. A ship-in-a-bottle strategy to synthesize encapsulated intermetallic nanoparticle catalysts: Exemplified for furfural hydrogenation. ACS Catal. 2016, 6, 1754-1763.
[17]
Chung, D. Y.; Jun, S. W.; Yoon, G.; Kwon, S. G.; Shin, D. Y.; Seo, P.; Yoo, J. M.; Shin, H.; Chung, Y. H.; Kim, H. et al. Highly durable and active PtFe nanocatalyst for electrochemical oxygen reduction reaction. J. Am. Chem. Soc. 2015, 137, 15478-15485.
[18]
Liang, J. S.; Li, N.; Zhao, Z. L.; Ma, L.; Wang, X. M.; Li, S. Z.; Liu, X.; Wang, T. Y.; Du, Y. P.; Lu, G. et al. Tungsten-doped L10-PtCo ultrasmall nanoparticles as a high-performance fuel cell cathode. Angew. Chem. 2019, 131, 15617-15623.
[19]
Wang, T. Y.; Liang, J. S.; Zhao, Z. L.; Li, S. Z.; Lu, G.; Xia, Z. C.; Wang, C.; Luo, J. H.; Han, J. T.; Ma, C. et al. Sub-6 nm fully ordered L10-Pt-Ni-Co nanoparticles enhance oxygen reduction via Co doping induced ferromagnetism enhancement and optimized surface strain. Adv. Energy Mater. 2019, 9, 1803771.
[20]
Wang, C.; Hou, Y. L.; Kim, J.; Sun, S. H. A general strategy for synthesizing FePt nanowires and nanorods. Angew. Chem., Int. Ed. 2007, 46, 6333-6335.
[21]
Bu, L. Z.; Zhang, N.; Guo, S. J.; Zhang, X.; Li, J.; Yao, J. L.; Wu, T.; Lu, G.; Ma, J. Y.; Su, D. et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 2016, 354, 1410-1414.
[22]
Chen, Q. L.; Zhang, J. W.; Jia, Y. Y.; Jiang, Z. Y.; Xie, Z. X.; Zheng, L. S. Wet chemical synthesis of intermetallic Pt3Zn nanocrystals via weak reduction reaction together with UPD process and their excellent electrocatalytic performances. Nanoscale 2014, 6, 7019-7024.
[23]
Chou, N. H.; Schaak, R. E. Shape-controlled conversion of β-Sn nanocrystals into intermetallic M-Sn (M = Fe, Co, Ni, Pd) nanocrystals. J. Am. Chem. Soc. 2007, 129, 7339-7345.
[24]
Gao, Q.; Ju, Y. M.; An, D.; Gao, M. R.; Cui, C. H.; Liu, J. W.; Cong, H. P.; Yu, S. H. Shape-controlled synthesis of monodisperse PdCu nanocubes and their electrocatalytic properties. ChemSusChem 2013, 6, 1878-1882.
[25]
Liao, H. B.; Zhu, J. H.; Hou, Y. L. Synthesis and electrocatalytic properties of PtBi nanoplatelets and PdBi nanowires. Nanoscale 2014, 6, 1049-1055.
[26]
Luo, Z. S.; Lu, J. M.; Flox, C.; Nafria, R.; Genç, A.; Arbiol, J.; Llorca, J.; Ibáñez, M.; Morante, J. R.; Cabot, A. Pd2Sn [010] nanorods as a highly active and stable ethanol oxidation catalyst. J. Mater. Chem. A 2016, 4, 16706-16713.
[27]
Maksimuk, S.; Yang, S. C.; Peng, Z. M.; Yang, H. Synthesis and characterization of ordered intermetallic PtPb nanorods. J. Am. Chem. Soc. 2007, 129, 8684-8685.
[28]
Rong, H. P.; Mao, J. J.; Xin, P. Y.; He, D. S.; Chen, Y. J.; Wang, D. S.; Niu, Z. Q.; Wu, Y. E.; Li, Y. D. Kinetically controlling surface structure to construct defect-rich intermetallic nanocrystals: Effective and stable catalysts. Adv. Mater. 2016, 28, 2540-2546.
[29]
Liu, S. J.; Sun, Z. H.; Liu, Q. H.; Wu, L. H.; Huang, Y. Y.; Yao, T.; Zhang, J.; Hu, T. D.; Ge, M. R.; Hu, F. C. et al. Unidirectional thermal diffusion in bimetallic Cu@Au nanoparticles. ACS Nano 2014, 8, 1886-1892.
[30]
Sra, A. K.; Ewers, T. D.; Schaak, R. E. Direct solution synthesis of intermetallic AuCu and AuCu3 nanocrystals and nanowire networks. Chem. Mater. 2005, 17, 758-766.
[31]
Yang, J. H.; Chng, L. L.; Yang, X. F.; Chen, X. J.; Ying, J. Y. Multiply-twinned intermetallic AuCu pentagonal nanorods. Chem. Commun. 2014, 50, 1141-1143.
[32]
Barth, S.; Boland, J. J.; Holmes, J. D. Defect transfer from nanoparticles to nanowires. Nano Lett. 2011, 11, 1550-1555.
[33]
Li, Q.; Wu, L. H.; Wu, G.; Su, D.; Lv, H. F.; Zhang, S.; Zhu, W. L.; Casimir, A.; Zhu, H. Y.; Mendoza-Garcia, A. et al. New approach to fully ordered fct-FePt nanoparticles for much enhanced electrocatalysis in acid. Nano Lett. 2015, 15, 2468-2473.
[34]
Li, J. R.; Sun, S. H. Intermetallic nanoparticles: Synthetic control and their enhanced electrocatalysis. Acc. Chem. Res. 2019, 52, 2015-2025.
[35]
Cui, F.; Yu, Y.; Dou, L. T.; Sun, J. W.; Yang, Q.; Schildknecht, C.; Schierle-Arndt, K.; Yang, P. D. Synthesis of ultrathin copper nanowires using tris(trimethylsilyl)silane for high-performance and low-haze transparent conductors. Nano Lett. 2015, 15, 7610-7615.
[36]
Jin, M. S.; He, G. N.; Zhang, H.; Zeng, J.; Xie, Z. X.; Xia, Y. N. Shape-controlled synthesis of copper nanocrystals in an aqueous solution with glucose as a reducing agent and hexadecylamine as a capping agent. Angew. Chem., Int. Ed. 2011, 50, 10560-10564.
[37]
Yang, H. J.; He, S. Y.; Tuan, H. Y. Self-seeded growth of five-fold twinned copper nanowires: Mechanistic study, characterization, and SERS applications. Langmuir 2014, 30, 602-610.
[38]
Cui, F.; Dou, L. T.; Yang, Q.; Yu, Y.; Niu, Z. Q.; Sun, Y. C.; Liu, H.; Dehestani, A.; Schierle-Arndt, K.; Yang, P. D. Benzoin radicals as reducing agent for synthesizing ultrathin copper nanowires. J. Am. Chem. Soc. 2017, 139, 3027-3032.
[39]
Niu, Z. Q.; Cui, F.; Kuttner, E.; Xie, C. L.; Chen, H.; Sun, Y. C.; Dehestani, A.; Schierle-Arndt, K.; Yang, P. D. Synthesis of silver nanowires with reduced diameters using benzoin-derived radicals to make transparent conductors with high transparency and low haze. Nano Lett. 2018, 18, 5329-5334.
[40]
Sun, Y. G.; Ren, Y.; Liu, Y. Z.; Wen, J. G.; Okasinski, J. S.; Miller, D. J. Ambient-stable tetragonal phase in silver nanostructures. Nat. Commun. 2012, 3, 971.
[41]
Niu, Z. Q.; Cui, F.; Yu, Y.; Becknell, N.; Sun, Y. C.; Khanarian, G.; Kim, D.; Dou, L. T.; Dehestani, A.; Schierle-Arndt, K. et al. Ultrathin epitaxial Cu@Au core-shell nanowires for stable transparent conductors. J. Am. Chem. Soc. 2017, 139, 7348-7354.
[42]
Bonneaux, J.; Guymont, M. Study of the order-disorder transition series in AuCu by in-situ temperature electron microscopy. Intermetallics 1999, 7, 797-805.
[43]
Chen, H. Q.; Nishijima, M.; Wang, G. L.; Khene, S.; Zhu, M. Q.; Deng, X.; Zhang, X. M.; Wen, W.; Luo, Y.; He, Q. G. The ordered and disordered nano-intermetallic AuCu/C catalysts for the oxygen reduction reaction: The differences of the electrochemical performance. J. Electrochem. Soc. 2017, 164, F1654-F1661.
[44]
Kim, D.; Xie, C. L.; Becknell, N.; Yu, Y.; Karamad, M.; Chan, K.; Crumlin, E. J.; Nørskov, J. K.; Yang, P. D. Electrochemical activation of CO2 through atomic ordering transformations of AuCu nanoparticles. J. Am. Chem. Soc. 2017, 139, 8329-8336.
[45]
Tee, S. Y.; Ye, E. Y.; Pan, P. H.; Lee, C. J. J.; Hui, H. K.; Zhang, S. Y.; Koh, L. D.; Dong, Z. L.; Han, M. Y. Fabrication of bimetallic Cu/Au nanotubes and their sensitive, selective, reproducible and reusable electrochemical sensing of glucose. Nanoscale 2015, 7, 11190-11198.
[46]
Jacobsson, P.; Sundqvist, B. Pressure dependence of the thermal and electrical conductivities of the intermetallic compounds AuCu and AuCu3. J. Phys. Chem. Solids 1988, 49, 441-450.
[47]
Johansson, C. H.; Linde, J. O. Röntgenographische und elektrische Untersuchungen des CuAu-Systems. Annalen der Physik 1936, 417, 1-48.
[48]
Parks, B. W. Jr.; Fritz, J. D.; Pickering, H. W. The difference in the electrochemical behavior of the ordered and disordered phases of Cu3Au. Scr. Metall. 1989, 23, 951-956.
Nano Research
Pages 2564-2569
Cite this article:
Niu Z, Chen S, Yu Y, et al. Morphology-controlled transformation of Cu@Au core-shell nanowires into thermally stable Cu3Au intermetallic nanowires. Nano Research, 2020, 13(9): 2564-2569. https://doi.org/10.1007/s12274-020-2900-z
Topics:

789

Views

24

Crossref

N/A

Web of Science

23

Scopus

4

CSCD

Altmetrics

Received: 10 April 2020
Revised: 08 May 2020
Accepted: 22 May 2020
Published: 21 June 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return