AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Unveiling nanoplates-assembled Bi2MoO6 microsphere as a novel anode material for high performance potassium-ion batteries

Junxian HuYangyang XieJingqiang ZhengYanqing LaiZhian Zhang( )
School of Metallurgy and Environment, Central South University, Changsha 410083, China
Show Author Information

Graphical Abstract

Abstract

Bismuth (Bi)-based electrode has aroused tremendous interest in potassium-ion batteries (PIBs) on account of its low cost, high electronic conductivity, low charge voltage and high theoretical capacity. However, the rapid capacity fading and poor lifespan induced by the normalized volume expansion (up to ~ 406%) and serious aggregation of Bi during cycling process hinder its application. Herein, bismuth molybdate (Bi2MoO6) microsphere assembled by 2D nanoplate units is successfully prepared by a facile solvothermal method and demonstrated as a promising anode for PIBs. The unique microsphere structure and the self-generated potassium molybdate (K-Mo-O species) during the electrochemical reactions can effectively suppress mechanical fracture of Bi-based anode originated from the volume variation during charge/discharge of the battery. As a result, the Bi2MoO6 microsphere without hybridizing with any other conductive carbon matrix shows superior electrochemical performance, which delivers a high reversible capacity of 121.7 mAh·g-1 at 100 mA·g-1 over 600 cycles. In addition, the assembled perylenetetracarboxylic dianhydride (PTCDA)//Bi2MoO6 full-cell coupled with PTCDA cathode demonstrates the potential application of Bi2MoO6 microsphere. Most importantly, the phase evolution of Bi2MoO6 microsphere during potassiation/depotassiation process is successfully deciphered by ex situ X-ray diffraction (XRD), X-ray photoemission spectroscopy (XPS), and transmission electron microscopy (TEM) technologies, which reveals a combination mechanism of conversion reaction and alloying/dealloying reaction for Bi2MoO6 anode. Our findings not only open a new way to enhance the performance of Bi-based anode in PIBs, but also provide useful implications to other alloy-type anodes for secondary alkali-metal ion batteries.

Electronic Supplementary Material

Download File(s)
12274_2020_2906_MOESM1_ESM.pdf (3.2 MB)

References

[1]
Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652-657.
[2]
Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928-935.
[3]
Palacín, M. R. Recent advances in rechargeable battery materials: A chemist’s perspective. Chem. Soc. Rev. 2009, 38, 2565-2575.
[4]
Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. Sodium-ion batteries. Adv. Funct. Mater. 2013, 23, 947-958.
[5]
Yu, H. J.; Ren, Y.; Xiao, D. D.; Guo, S. H.; Zhu, Y. B.; Qian, Y. M.; Gu, L.; Zhou, H. S. An ultrastable anode for long-life room-temperature sodium-ion batteries. Angew. Chem., Int. Ed. 2014, 53, 8963-8969.
[6]
Lin, H. Z.; Li, M. L.; Yang, X.; Yu, D. X.; Zeng, Y.; Wang, C. Z.; Chen, G.; Du, F. Nanosheets-assembled CuSe crystal pillar as a stable and high-power anode for sodium-ion and potassium-ion batteries. Adv. Energy Mater. 2019, 9, 1900323.
[7]
Hu, Z.; Liu, Q. N.; Chou, S. L.; Dou, S. X. Advances and challenges in metal sulfides/selenides for next-generation rechargeable sodium-ion batteries. Adv. Mater. 2017, 29, 1700606.
[8]
Zhang, W. C.; Mao, J. F.; Li, S. A.; Chen, Z. X.; Guo, Z. P. Phosphorus- based alloy materials for advanced potassium-ion battery anode. J. Am. Chem. Soc. 2017, 139, 3316-3319.
[9]
Luo, W.; Li, F.; Zhang, W. R.; Han, K.; Gaumet, J. J.; Schaefer, H. E.; Mai, L. Q. Encapsulating segment-like antimony nanorod in hollow carbon tube as long-lifespan, high-rate anodes for rechargeable K-ion batteries. Nano Res. 2019, 12, 1025-1031.
[10]
Ma, G. Y.; Xu, X.; Feng, Z. Y.; Hu, C. J.; Zhu, Y. S.; Yang, X. F.; Yang, J.; Qian, Y. T. Carbon-coated mesoporous Co9S8 nanoparticles on reduced graphene oxide as a long-life and high-rate anode material for potassium-ion batteries. Nano Res. 2020, 13, 802-809.
[11]
Wu, Y. H.; Xu, Y.; Li, Y. L.; Lyu, P. B.; Wen, J.; Zhang, C. L.; Zhou, M.; Fang, Y. G.; Zhao, H. P.; Kaiser, U. et al. Unexpected intercalation- dominated potassium storage in WS2 as a potassium-ion battery anode. Nano Res. 2019, 12, 2997-3002.
[12]
Sun, Q.; Li, D. P.; Cheng, J.; Dai, L. N.; Guo, J. G.; Liang, Z.; Ci, L. J. Nitrogen-doped carbon derived from pre-oxidized pitch for surface dominated potassium-ion storage. Carbon 2019, 155, 601-610.
[13]
Hu, J. X.; Xie, Y. Y.; Yin, M.; Zhang, Z. A. Nitrogen doping and graphitization tuning coupled hard carbon for superior potassium-ion storage. J. Energy Chem. 2020, 49, 327-334.
[14]
Wang, B. Y.; Deng, Z. W.; Xia, Y. T.; Hu, J. X.; Li, H. J.; Wu, H.; Zhang, Q. B.; Zhang, Y.; Liu, H. K.; Dou, S. X. Realizing reversible conversion-alloying of Sb(V) in polyantimonic acid for fast and durable lithium-and potassium-ion storage. Adv. Energy Mater. 2020, 10, 1903119.
[15]
Yang, F. H.; Gao, H.; Hao, J. N.; Zhang, S. L.; Li, P.; Liu, Y. Q.; Chen, J.; Guo, Z. P. Yolk-shell structured FeP@C nanoboxes as advanced anode materials for rechargeable lithium-/potassium-ion batteries. Adv. Funct. Mater. 2019, 29, 1808291.
[16]
Ge, J. M.; Fan, L.; Wang, J.; Zhang, Q. F.; Liu, Z. M.; Zhang, E. J.; Liu, Q.; Yu, X. Z.; Lu, B. A. MoSe2/N-doped carbon as anodes for potassium-ion batteries. Adv. Energy Mater. 2018, 8, 1801477.
[17]
Jian, Z. L.; Luo, W.; Ji, X. L. Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 2015, 137, 11566-11569.
[18]
Chen, C. J.; Wang, Z. G.; Zhang, B.; Miao, L.; Cai, J.; Peng, L. F.; Huang, Y. Y.; Jiang, J. J.; Huang, Y. H.; Zhang, L. N. et al. Nitrogen-rich hard carbon as a highly durable anode for high-power potassium-ion batteries. Energy Storage Mater. 2017, 8, 161-168.
[19]
Jin, T.; Li, H. X.; Li, Y.; Jiao, L. F.; Chen, J. Intercalation pseudocapacitance in flexible and self-standing V2O3 porous nanofibers for high-rate and ultra-stable K ion storage. Nano Energy 2018, 50, 462-467.
[20]
Zhao, Y. X.; Ren, X. C.; Xing, Z. J.; Zhu, D. M.; Tian, W. F.; Guan, C. R.; Yang, Y.; Qin, W. M.; Wang, J.; Zhang, L. L. et al. In situ formation of hierarchical bismuth nanodots/graphene nanoarchitectures for ultrahigh-rate and durable potassium-ion storage. Small 2019, 16, 1905789.
[21]
Sultana, I.; Ramireddy, T.; Rahman, M. M.; Chen, Y.; Glushenkov, A. M. Tin-based composite anodes for potassium-ion batteries. Chem. Commun. 2016, 52, 9279-9282.
[22]
Xiong, P. X.; Wu, J. X.; Zhou, M. F.; Xu, Y. H. Bismuth-antimony alloy nanoparticle@porous carbon nanosheet composite anode for high-performance potassium-ion batteries. ACS Nano 2020, 14, 1018-1026
[23]
Miao, W. F.; Zhang, Y.; Li, H. T.; Zhang, Z. H.; Li, L.; Yu, Z.; Zhang, W. M. ZIF-8/ZIF-67-derived 3D amorphous carbon-encapsulated CoS/NCNTs supported on CoS-coated carbon nanofibers as an advanced potassium-ion battery anode. J. Mater. Chem. A 2019, 7, 5504-5512.
[24]
Zheng, N.; Jiang, G. Y.; Chen, X.; Mao, J. Y.; Zhou, Y. J.; Li, Y. S. Rational design of a tubular, interlayer expanded MoS2-N/O doped carbon composite for excellent potassium-ion storage. J. Mater. Chem. A 2019, 7, 9305-9315.
[25]
Chu, J. H.; Wang, W.; Yu, Q. Y.; Lao, C. Y.; Zhang, L.; Xi, K.; Han, K.; Xing, L. D.; Song, L.; Wang, M. et al. Open ZnSe/C nanocages: Multi-hierarchy stress-buffer for boosting cycling stability in potassium-ion batteries. J. Mater. Chem. A 2020, 8, 779-788.
[26]
Song, K. M.; Liu, C. T.; Mi, L. W.; Chou, S. L.; Chen, W. H.; Shen, C. Y. Recent progress on the alloy-based anode for sodium-ion batteries and potassium-ion batteries. Small 2019, 1903194.
[27]
Lei, K. X.; Wang, C. C.; Liu, L. J.; Luo, Y. W.; Mu, C. N.; Li, F. J.; Chen, J. A porous network of bismuth used as the anode material for high-energy-density potassium-ion batteries. Angew. Chem., Int. Ed. 2018, 57, 4687-4691.
[28]
Zhang, Q.; Mao, J. F.; Pang, W. K.; Zheng, T.; Sencadas, V.; Chen, Y. Z.; Liu, Y. J.; Guo, Z. P. Boosting the potassium storage performance of alloy-based anode materials via electrolyte salt chemistry. Adv. Energy Mater. 2018, 8, 1703288.
[29]
Huang, J. Q.; Lin, X. Y.; Tan, H.; Zhang, B. Bismuth microparticles as advanced anodes for potassium-ion battery. Adv. Energy Mater. 2018, 8, 1703496.
[30]
Cheng, X. L.; Li, D. J.; Wu, Y.; Xu, R.; Yu, Y. Bismuth nanospheres embedded in three-dimensional (3D) porous graphene frameworks as high performance anodes for sodium-and potassium-ion batteries. J. Mater. Chem. A 2019, 7, 4913-4921.
[31]
Su, S. L.; Liu, Q.; Wang, J.; Fan, L.; Ma, R. F.; Chen, S. H.; Han, X.; Lu, B. A. Control of SEI formation for stable potassium-ion battery anode by Bi-MOF-derived nanocomposites. ACS Appl. Mater. Interfaces 2019, 11, 22474-22480.
[32]
Xie, F. X.; Zhang, L.; Chen, B.; Chao, D. L.; Gu, Q. F.; Johannessen, B.; Jaroniec, M.; Qiao, S. Z. Revealing the origin of improved reversible capacity of dual-shell bismuth boxes anode for potassium-ion batteries. Matter 2019, 1, 1681-1693.
[33]
Zhang, R. D.; Bao, J. Z.; Wang, Y. H.; Sun, C. F. Concentrated electrolytes stabilize bismuth-potassium batteries. Chem. Sci. 2018, 9, 6193-6198.
[34]
Qi, S. H.; Xie, X.; Peng, X. W.; Ng, D. H. L.; Wu, M. G.; Liu, Q. H.; Yang, J. L.; Ma, J. M. Mesoporous carbon-coated bismuth nanorods as anode for potassium-ion batteries. Phys. Status Solidi RRL. 2019, 13, 1900209.
[35]
Yang, H.; Xu, R.; Yao, Y.; Ye, S. F.; Zhou, X. F.; Yu, Y. Multicore-shell Bi@ N-doped carbon nanospheres for high power density and long cycle life sodium- and potassium-ion anodes. Adv. Funct. Mater. 2019, 29, 1809195.
[36]
Sun, J. G.; Tu, W. Q.; Chen, C.; Plewa, A.; Ye, H. L.; Oh, J. A. S.; He, L. C.; Wu, T.; Zeng, K. Y.; Lu, L. Chemical bonding construction of reduced graphene oxide-anchored few-layer bismuth oxychloride for synergistically improving sodium-ion storage. Chem. Mater. 2019, 31, 7311-7319.
[37]
Dubal, D. P.; Jayaramulu, K.; Zboril, R.; Fischer, R. A.; Gomez-Romero, P. Unveiling BiVO4 nanorods as a novel anode material for high performance lithium ion capacitors: Beyond intercalation strategies. J. Mater. Chem. A 2018, 6, 6096-6106.
[38]
Li, W.; Xu, Y.; Dong, Y. L.; Wu, Y. H.; Zhang, C. L.; Zhou, M.; Fu, Q.; Wu, M. H.; Lei, Y. Bismuth oxychloride nanoflake assemblies as a new anode for potassium ion batteries. Chem. Commun. 2019, 55, 6507-6510.
[39]
Yu, H. B.; Jiang, L. B.; Wang, H.; Huang, B. B.; Yuan, X. Z.; Huang, J. H.; Zhang, J.; Zeng, G. M. Modulation of Bi2MoO6-based materials for photocatalytic water splitting and environmental application: A critical review. Small 2019, 15, 1901008.
[40]
Xing, Z.; Kong, W. H.; Wu, T. W.; Xie, H. T.; Wang, T.; Luo, Y. L.; Shi, X. F.; Asiri, A. M.; Zhang, Y. N.; Sun, X. P. Hollow Bi2MoO6 sphere effectively catalyzes the ambient electroreduction of N2 to NH3. ACS Sustainable Chem. Eng. 2019, 7, 12692-12696.
[41]
Zhang, Y.; Zhao, G. G.; Ge, P.; Wu, T. J.; Li, L.; Cai, P.; Liu, C.; Zou, G. Q.; Hou, H. S.; Ji, X. B. Bi2MoO6 microsphere with double- polyaniline layers toward ultrastable lithium energy storage by reinforced structure. Inorg. Chem. 2019, 58, 6410-6421.
[42]
Yuan, S.; Zhao, Y.; Chen, W. B.; Wu, C.; Wang, X. Y.; Zhang, L. N.; Wang, Q. Self-assembled 3D hierarchical porous Bi2MoO6 microspheres toward high capacity and ultra-long-life anode material for Li-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 21781-21790.
[43]
Hardcastle, F. D.; Wachs, I. E. Molecular structure of molybdenum oxide in bismuth molybdates by Raman spectroscopy. J. Phys. Chem. 1991, 95, 10763-10772.
[44]
Wang, S. Y.; Ding, X.; Yang, N.; Zhan, G. M.; Zhang, X. H.; Dong, G. H.; Zhang, L. Z.; Chen, H. Insight into the effect of bromine on facet-dependent surface oxygen vacancies construction and stabilization of Bi2MoO6 for efficient photocatalytic NO removal. Appl. Catal. B Environ. 2020, 265, 118585.
[45]
Zhai, X. G.; Gao, J. P.; Xue, R. N.; Xu, X. Y.; Wang, L. Y.; Tian, Q.; Liu, Y. Facile synthesis of Bi2MoO6/reduced graphene oxide composites as anode materials towards enhanced lithium storage performance. J. Colloid Interf. Sci. 2018, 518, 242-251.
[46]
Wang, J.; Wang, B.; Liu, Z. M.; Fan, L.; Zhang, Q. F.; Ding, H. B.; Wang, L. L.; Yang, H. G.; Yu, X. Z.; Lu, B. A. Nature of bimetallic oxide Sb2MoO6/rGO anode for high-performance potassium-ion batteries. Adv. Sci. 2019, 6, 1900904.
[47]
Lu, X.; Wang, Z. Y.; Liu, K.; Luo, J. M.; Wang, P.; Niu, C. M.; Wang, H. K.; Li, W. Y. Hierarchical Sb2MoO6 microspheres for high- performance sodium-ion battery anode. Energy Storage Mater. 2019, 17, 101-110.
[48]
Cao, K. Z.; Liu, H. Q.; Li, W. Y.; Han, Q. Q.; Zhang, Z.; Huang, K. J.; Jing, Q. S.; Jiao, L. F. CuO nanoplates for high-performance potassium-ion batteries. Small 2019, 15, 1901775.
[49]
Li, D. P.; Ren, X. H.; Ai, Q.; Sun, Q.; Zhu, L.; Liu, Y.; Liang, Z.; Peng, R. Q.; Si, P. C.; Lou, J. et al. Facile fabrication of nitrogen- doped porous carbon as superior anode material for potassium-ion batteries. Adv. Energy Mater. 2018, 8, 1802386.
[50]
Chen, J. T.; Yang, B. J.; Hou, H. J.; Li, H. X.; Liu, L.; Zhang, L.; Yan, X. B. Disordered, large interlayer spacing, and oxygen-rich carbon nanosheets for potassium ion hybrid capacitor. Adv. Energy Mater. 2019, 9, 1803894.
[51]
Li, P.; Hwang, J. Y.; Park, S. M.; Sun, Y. K. Superior lithium/ potassium storage capability of nitrogen-rich porous carbon nanosheets derived from petroleum coke. J. Mater. Chem. A 2018, 6, 12551-12558.
[52]
Xing, L. D.; Yu, Q. Y.; Jiang, B.; Chu, J. H.; Lao, C. Y.; Wang, M.; Han, K.; Liu, Z. W.; Bao, Y. P.; Wang, W. Carbon-encapsulated ultrathin MoS2 nanosheets epitaxially grown on porous metallic TiNb2O6 microspheres with unsaturated oxygen atoms for superior potassium storage. J. Mater. Chem. A 2019, 7, 5760-5768.
[53]
Lu, J.; Wang, C. L.; Yu, H. L.; Gong, S. P.; Xia, G. L.; Jiang, P.; Xu, P. P.; Yang, K.; Chen, Q. W. Oxygen/fluorine dual-doped porous carbon nanopolyhedra enabled ultrafast and highly stable potassium storage. Adv. Funct. Mater. 2019, 29, 1906126.
[54]
Hu, J. X.; Xie, Y. Y.; Zhou, X. L.; Zhang, Z. A. Engineering hollow porous carbon-sphere-confined MoS2 with expanded (002) planes for boosting potassium-ion storage. ACS Appl. Mater. Interfaces 2020, 12, 1232-1240.
[55]
Li, N.; Zhang, F.; Tang, Y. B. Hierarchical T-Nb2O5 nanostructure with hybrid mechanisms of intercalation and pseudocapacitance for potassium storage and high-performance potassium dual-ion batteries. J. Mater. Chem. A 2018, 6, 17889-17895.
[56]
Li, P.; Zheng, X. B.; Yu, H. X.; Zhao, G. Q.; Shu, J.; Xu, X.; Sun, W. P.; Dou, S. X. Electrochemical potassium/lithium-ion intercalation into TiSe2: Kinetics and mechanism. Energy Storage Mater. 2019, 16, 512-518.
[57]
Li, J. M.; Du, K.; Lai, Y. Q.; Chen, Y. X.; Zhang, Z. A. ZnSb2O6: An advanced anode material for Li-ion batteries. J. Mater. Chem. A 2017, 5, 10843-10848.
[58]
Yang, C.; Lv, F.; Zhang, Y. L.; Wen, J.; Dong, K.; Su, H.; Lai, F. L.; Qian, G. Y.; Wang, W.; Hilger, A. et al. Confined Fe2VO4⊂nitrogen- doped carbon nanowires with internal void space for high-rate and ultrastable potassium-ion storage. Adv. Energy Mater. 2019, 9, 1902674.
[59]
Sun, C. F.; Hu, J. K.; Wang, P.; Cheng, X. Y.; Lee, S. B.; Wang, Y. H. Li3PO4 matrix enables a long cycle life and high energy efficiency bismuth-based battery. Nano Lett. 2016, 16, 5875-5882.
[60]
Fan, L.; Ma, R. F.; Wang, J.; Yang, H. G.; Lu, B. A. An ultrafast and highly stable potassium-organic battery. Adv. Mater. 2018, 30, 1805486.
[61]
Qu, B. H.; Ma, C. Z.; Ji, G.; Xu, C. H.; Xu, J.; Meng, Y. S.; Wang, T. H.; Lee, J. Y. Layered SnS2-reduced graphene oxide composite-a high-capacity, high-rate, and long-cycle life sodium-ion battery anode material. Adv. Mater. 2014, 26, 3854-3859.
Nano Research
Pages 2650-2657
Cite this article:
Hu J, Xie Y, Zheng J, et al. Unveiling nanoplates-assembled Bi2MoO6 microsphere as a novel anode material for high performance potassium-ion batteries. Nano Research, 2020, 13(10): 2650-2657. https://doi.org/10.1007/s12274-020-2906-6
Topics:

742

Views

43

Crossref

N/A

Web of Science

41

Scopus

2

CSCD

Altmetrics

Received: 17 March 2020
Revised: 27 May 2020
Accepted: 28 May 2020
Published: 02 July 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return