AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A photoactive process cascaded electrocatalysis for enhanced methanol oxidation over Pt-MXene-TiO2 composite

Yue Sun§Yunjie Zhou§Yan LiuQingyao WuMengmeng ZhuHui HuangYang Liu( )Mingwang Shao( )Zhenhui Kang( )
Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China

§ Yue Sun and Yunjie Zhou contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Highly efficient photo-assisted electrocatalysis for methanol oxidation reaction (MOR) realizes the conversion of solar and chemical energy into electric energy simultaneously. Here we report a Pt-MXene-TiO2 composite for highly efficient MOR via a photoactive cascaded electro-catalytic process. With light (UV and visible light) irradiation, MXene-TiO2 serves as the photo active centre (photoinduced hole) to activate the methanol molecules, while Pt particles are the active centre for the following electro-catalytic oxidation of those activated methanol molecules. Pt-MXene-TiO2 catalyst exhibits a lower onset potential (0.33 V) and an impressive mass activity of 2,750.42 mA·mg-1Pt under light illumination. It represents the highest MOR activity ever reported for photo-assisted electrocatalysts. Pt-MXene-TiO2 also shows excellent CO tolerance ability and stability, in which, after long-term (5,000 s) reaction, still keeps a high mass activity of 1,269.81 mA·mg-1Pt (62.66% of its initial activity). The photo-electro-catalytic system proposed in this work offers novel opportunities for exploiting photo-assisted enhancement of highly efficient and stable catalysts for MOR.

Electronic Supplementary Material

Download File(s)
12274_2020_2910_MOESM1_ESM.pdf (6.2 MB)

References

[1]
Reddington, E.; Sapienza, A.; Gurau, B.; Viswanathan, R.; Sarangapani, S.; Smotkin, E. S.; Mallouk, T. E. Combinatorial electrochemistry: A highly parallel, optical screening method for discovery of better electrocatalysts. Science 1998, 280, 1735-1737.
[2]
Zhao, X.; Yin, M.; Ma, L.; Liang, L.; Liu, C. P.; Liao, J. H.; Lu, T. H.; Xing, W. Recent advances in catalysts for direct methanolfuel cells. Energy Environ. Sci. 2011, 4, 2736-2753.
[3]
Chu, Y. Y.; Wang, Z. B.; Jiang, Z. Z.; Gu, D. M.; Yin, G. P. A novel structural design of a Pt/C-CeO2 catalyst with improved performance for methanol electro-oxidation by β-cyclodextrin carbonization. Adv. Mater. 2011, 23, 3100-3104.
[4]
Huang, H. J.; Yang, S. B.; Vajtai, R.; Wang, X.; Ajayan, P. M. Pt-decorated 3D architectures built from graphene and graphitic carbon nitride nanosheets as efficient methanol oxidation catalysts. Adv. Mater. 2014, 26, 5160-5165.
[5]
Yan, H. J.; Tian, C. G.; Sun, L.; Wang, B.; Wang, L.; Yin, J.; Wu, A. P.; Fu, H. G. Small-sized and high-dispersed WN from [SiO4(W3O9)4]4- clusters loading on GO-derived graphene as promising carriers for methanol electro-oxidation. Energy Environ. Sci. 2014, 7, 1939-1949.
[6]
Jahan, M.; Bao, Q. L.; Loh, K. P. Electrocatalytically active graphene- porphyrin MOF composite for oxygen reduction reaction. J. Am. Chem. Soc. 2012, 134, 6707-6713.
[7]
Kakati, N.; Maiti, J.; Lee, S. H.; Jee, S. H.; Viswanathan, B.; Yoon, Y. S. Anode catalysts for direct methanol fuel cells in acidic media: Do we have any alternative for Pt or Pt-Ru? Chem. Rev. 2014, 114, 12397-12429.
[8]
Xia, B. Y.; Wu, H. B.; Wang, X.; Lou, X. W. One-pot synthesis of cubic PtCu3 nanocages with enhanced electrocatalytic activity for the methanol oxidation reaction. J. Am. Chem. Soc. 2012, 134, 13934-13937.
[9]
Narayanamoorthy, B.; Datta, K. K. R.; Eswaramoorthy, M.; Balaji, S. Highly active and stable Pt3Rh nanoclusters as supportless electrocatalyst for methanol oxidation in direct methanol fuel cells. ACS Catal. 2014, 4, 3621-3629.
[10]
Cao, X.; Wang, N.; Han, Y.; Gao, C. Z.; Xu, Y.; Li, M. X.; Shao, Y. H. PtAg bimetallic nanowires: Facile synthesis and their use as excellent electrocatalysts toward low-cost fuel cells. Nano Energy 2015, 12, 105-114.
[11]
Yu, L. H.; Shao, Y.; Li, D. Z. Direct combination of hydrogen evolution from water and methane conversion in a photocatalytic system over Pt/TiO2. Appl. Catal. B Environ. 2017, 204, 216-223.
[12]
Su, C. Y.; Hsueh, Y. C.; Kei, C. C.; Lin, C. T.; Perng, T. P. Fabrication of high-activity hybrid Pt@ZnO catalyst on carbon cloth by atomic layer deposition for photoassisted electro-oxidation of methanol. J. Phys. Chem. C 2013, 117, 11610-11618.
[13]
Wu, S. C.; He, J. P.; Zhou, J. H.; Wang, T.; Guo, Y. X.; Zhao, J. Q.; Ding, X. C. Fabrication of unique stripe-shaped mesoporous TiO2 films and their performance as a novel photo-assisted catalyst support for DMFCs. J. Mater. Chem. 2011, 21, 2852-2854.
[14]
Polo, A. S.; Santos, M. C.; De Souza, R. F. B.; Alves, W. A. Pt-Ru-TiO2 photoelectrocatalysts for methanol oxidation. J. Power Sources 2011, 196, 872-876.
[15]
Li, W.; Bai, Y.; Li, F. J.; Liu, C.; Chan, K. Y.; Feng, X.; Lu, X. H. Core-shell TiO2/C nanofibers as supports for electrocatalytic and synergistic photoelectrocatalytic oxidation of methanol. J. Mater. Chem. 2012, 22, 4025-4031.
[16]
Drew, K.; Girishkumar, G.; Vinodgopal, K.; Kamat, P. V. Boosting fuel cell performance with a semiconductor photocatalyst: TiO2/Pt-Ru hybrid catalyst for methanol oxidation. J. Phys. Chem. B 2005, 109, 11851-11857.
[17]
Kim, S.; Hwang, S. J.; Choi, W. Visible light active platinum-ion- doped TiO2 photocatalyst. J. Phys. Chem. B. 2005, 109, 24260-24267.
[18]
Zhu, M. S.; Zhai, C. Y.; Sun, M. J.; Hu, Y. F.; Yan, B.; Du, Y. K. Ultrathin graphitic C3N4 nanosheet as a promising visible-light- activated support for boosting photoelectrocatalytic methanol oxidation. Appl. Catal. B Environ. 2017, 203, 108-115.
[19]
Hoffmann, M. R.; Martin, S. T.; Choi, W. Y.; Bahnemann, D. W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95, 69-96.
[20]
Köhler, R.; Tredicucci, A.; Beltram, F.; Beere, H. E.; Linfield, E. H.; Davies, A. G.; Ritchie, D. A.; Iotti, R. C.; Rossi, F. Terahertz semiconductor-heterostructure laser. Nature 2002, 417, 156-159.
[21]
Lin, X. P.; Xing, J. C.; Wang, W. D.; Shan, Z. C.; Xu, F. F.; Huang, F. Q. Photocatalytic activities of heterojunction semiconductors Bi2O3/BaTiO3: A strategy for the design of efficient combined photocatalysts. J. Phys. Chem. C 2007, 111, 18288-18293.
[22]
Zhang, H.; Chen, G.; Bahnemann, D. W. Photoelectrocatalytic materials for environmental applications. J. Mater. Chem. 2009, 19, 5089-5121.
[23]
Chen, Y. Z.; Wang, Z. U.; Wang, H. W.; Lu, J. L.; Yu, S. H.; Jiang, H. L. Singlet oxygen-engaged selective photo-oxidation over Pt nanocrystals/porphyrinic MOF: The roles of photothermal effect and Pt electronic state. J. Am. Chem. Soc. 2017, 139, 2035-2044.
[24]
Katz, E.; Willner, B.; Willner, I. Light-controlled electron transfer reactions at photoisomerizable monolayer electrodes by means of electrostatic interactions: Active interfaces for the amperometric transduction of recorded optical signals. Biosens. Bioelectron. 1997, 12, 703-719.
[25]
Čejka, J.; Nachtigall, P.; Centi, G. New catalytic materials for energy and chemistry in transition. Chem. Soc. Rev. 2018, 47, 8066-8071.
[26]
Sudarsanam, P.; Zhong, R. Y.; Van Den Bosch, S.; Coman, S. M.; Parvulescu, V. I.; Sels, B. F. Functionalised heterogeneous catalysts for sustainable biomass valorisation. Chem. Soc. Rev. 2018, 47, 8349-8402.
[27]
Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 2017, 29, 7633-7644.
[28]
Peng, C.; Wei, P.; Li, X. Y.; Liu, Y. P.; Cao, Y. H.; Wang, H. J.; Yu, H.; Peng, F.; Zhang, L. Y.; Zhang, B. S. et al. High efficiency photocatalytic hydrogen production over ternary Cu/TiO2@Ti3C2Tx enabled by low-work-function 2D titanium carbide. Nano Energy 2018, 53, 97-107.
[29]
Peng, C.; Yang, X. F.; Li, Y. H.; Yu, H.; Wang, H. J.; Peng, F. Hybrids of two-dimensional Ti3C2 and TiO2 exposing {001} facets toward enhanced photocatalytic activity. ACS Appl. Mater. Interfaces 2016, 8, 6051-6060.
[30]
Peng, C.; Wang, H. J.; Yu, H.; Peng, F. (111) TiO2-x/Ti3C2: Synergy of active facets, interfacial charge transfer and Ti3+ doping for enhance photocatalytic activity. Mater. Res. Bull. 2017, 89, 16-25.
[31]
Xu, Y. J.; Wang, S.; Yang, J.; Han, B.; Nie, R.; Wang, J. X.; Wang, J. G.; Jing, H. W. In-situ grown nanocrystal TiO2 on 2D Ti3C2 nanosheets for artificial photosynthesis of chemical fuels. Nano Energy 2018, 51, 442-450.
[32]
An, X. Q.; Wang, W.; Wang, J. P.; Duan, H. Z.; Shi, J. T.; Yu, X. L. The synergetic effects of Ti3C2 MXene and Pt as co-catalysts for highly efficient photocatalytic hydrogen evolution over g-C3N4. Phys. Chem. Chem. Phys. 2018, 20, 11405-11411.
[33]
Haselmann, G. M.; Eder, D. Early-stage deactivation of Platinum- loaded TiO2 using in situ photodeposition during photocatalytic hydrogen evolution. ACS Catal. 2017, 7, 4668-4675.
[34]
Cao, S. W.; Jiang, J.; Zhu, B. C.; Yu, J. G. Shape-dependent photocatalytic hydrogen evolution activity over a Pt nanoparticle coupled g-C3N4 photocatalyst. Phys. Chem. Chem. Phys. 2016, 18, 19457-19463.
[35]
Liu, Q. X.; Ai, L. H.; Jiang, J. MXene-derived TiO2@C/g-C3N4 heterojunctions for highly efficient nitrogen photofixation. J. Mater. Chem. A 2018, 6, 4102-4110.
[36]
Li, Z. S.; Ye, L. T.; Lei, F. L.; Wang, Y. L.; Xu, S. H.; Lin, S. Enhanced electro-photo synergistic catalysis of Pt(Pd)/ZnO/graphene composite for methanol oxidation under visible light irradiation. Electrochim. Acta 2016, 188, 450-460.
[37]
Odetola, C.; Trevani, L. N.; Easton, E. B. Photo enhanced methanol electrooxidation: Further insights into Pt and TiO2 nanoparticle contributions. Appl. Catal. B Environ. 2017, 210, 263-275.
Nano Research
Pages 2683-2690
Cite this article:
Sun Y, Zhou Y, Liu Y, et al. A photoactive process cascaded electrocatalysis for enhanced methanol oxidation over Pt-MXene-TiO2 composite. Nano Research, 2020, 13(10): 2683-2690. https://doi.org/10.1007/s12274-020-2910-x
Topics:

790

Views

43

Crossref

N/A

Web of Science

43

Scopus

8

CSCD

Altmetrics

Received: 11 April 2020
Revised: 16 May 2020
Accepted: 30 May 2020
Published: 05 October 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return