AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Trimetallic Au@PdPb nanowires for oxygen reduction reaction

Xian Jiang1,2,3Yuexin Xiong3Ruopeng Zhao2Jiancheng Zhou1( )Jong-Min Lee2( )Yawen Tang3( )
School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
Show Author Information

Graphical Abstract

Abstract

The development of highly efficient and stable Pd-based catalysts is crucial to improve their sluggish oxygen reduction reaction (ORR) kinetics in acid media. To improve ORR activity and utilization efficiency of Pd, an ideal catalyst should have ORR-favorable chemical environment, optimized geometric structure, and long periods of operation. In this work, we first synthesize a novel trimetallic Au@PdPb core-shell catalyst consisting of PdPb alloy nano-layers grown on the surface of ultrathin Au nanowires (NWs) by a two-step water-bath method. The Au@PdPb NWs have the merits of anisotropic one-dimensional nanostructure, high utilization efficiency of Pd atoms and doping of Pb atoms. Because of the structural and multiple compositional advantages, Au@PdPb NWs exhibit remarkably enhanced ORR activity with a high haIf-wave potential (0.827 V), much better than those of commercial Pd black (0.788 V) and bimetallic Au@Pd NWs (0.803 V). Moreover, Au@PdPb NWs display better electrocatalytic stability for the ORR than those of Pd black and Au@Pd NWs. This study demonstrates the validity of our approach for deriving highly ORR-active Pd-based catalysts by modifying their structure and composition.

Electronic Supplementary Material

Download File(s)
12274_2020_2911_MOESM1_ESM.pdf (2.6 MB)

References

[1]
Shen, H. J.; Gracia-Espino, E.; Ma, J. Y.; Zang, K. T.; Luo, J.; Wang, L.; Gao, S. S.; Mamat, X.; Hu, G. Z.; Wagberg, T. et al. Synergistic effects between atomically dispersed Fe-N-C and C-S-C for the oxygen reduction reaction in acidic media. Angew. Chem., Int. Ed. 2017, 56, 13800-13804.
[2]
Shao, M. H.; Chang, Q. W.; Dodelet, J. P.; Chenitz, R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 2016, 116, 3594-3657.
[3]
Li, J. C.; Cheng, M.; Li, T.; Ma, L.; Ruan, X. F.; Liu, D.; Cheng, H. M.; Liu, C.; Du, D.; Wei, Z. D. et al. Carbon nanotube-linked hollow carbon nanospheres doped with iron and nitrogen as single-atom catalysts for the oxygen reduction reaction in acidic solutions. J. Mater. Chem. A 2019, 7, 14478-14482.
[4]
Jiao, W. L.; Chen, C.; You, W. B.; Chen, G. Y.; Xue, S. Y.; Zhang, J.; Liu, J. W.; Feng, Y. Z.; Wang, P.; Wang, Y. Z. et al. Tuning strain effect and surface composition in PdAu hollow nanospheres as highly efficient ORR electrocatalysts and SERS substrates. Appl. Catal. B Environ. 2020, 262, 118298.
[5]
Luo, M. C.; Zhao, Z. L.; Zhang, Y. L.; Sun, Y. J.; Xing, Y.; Lv, F.; Yang, Y.; Zhang, X.; Hwang, S.; Qin, Y. N. et al. PdMo bimetallene for oxygen reduction catalysis. Nature 2019, 574, 81-85.
[6]
Bu, L. Z.; Shao, Q.; Pi, Y. C.; Yao, J. L.; Luo, M. C.; Lang, J. P.; Hwang, S.; Xin, H. L.; Huang, B. L.; Guo, J. et al. Coupled s-p-d exchange in facet-controlled Pd3Pb tripods enhances oxygen reduction catalysis. Chem 2018, 4, 359-371.
[7]
Chen, D.; Li, C. Y.; Liu, H.; Ye, F.; Yang, J. Core-shell Au@Pd nanoparticles with enhanced catalytic activity for oxygen reduction reaction via core-shell Au@Ag/Pd constructions. Sci. Rep. 2015, 5, 11949.
[8]
Chen, D.; Sun, P. C.; Liu, H.; Yang, J. Bimetallic Cu-Pd alloy multipods and their highly electrocatalytic performance for formic acid oxidation and oxygen reduction. J. Mater. Chem. A 2017, 5, 4421-4429.
[9]
Liu, R.; Zhang, L. Q.; Yu, C.; Sun, M. T.; Liu, J. F.; Jiang, G. B. Atomic-level-designed catalytically active palladium atoms on ultrathin gold nanowires. Adv. Mater. 2017, 29, 1604571.
[10]
Hong, W.; Wang, J.; Wang, E. Dendritic Au/Pt and Au/PtCu nanowires with enhanced electrocatalytic activity for methanol electrooxidation. Small 2014, 10, 3262-3265.
[11]
Yang, C. W.; Chanda, K.; Lin, P. H.; Wang, Y. N.; Liao, C. W.; Huang, M. H. Fabrication of Au-Pd core-shell heterostructures with systematic shape evolution using octahedral nanocrystal cores and their catalytic activity. J. Am. Chem. Soc. 2011, 133, 19993-20000.
[12]
Bu, L. Z.; Tang, C. Y.; Shao, Q.; Zhu, X.; Huang, X. Q. Three- dimensional Pd3Pb nanosheet assemblies: High-performance non-Pt electrocatalysts for bifunctional fuel cell reactions. ACS Catal. 2018, 8, 4569-4575.
[13]
Fang, C.; Bi, T.; Ding, Q.; Cui, Z.; Yu, N.; Xu, X.; Geng, B. High- density Pd nanorod arrays on Au nanocrystals for high-performance ethanol electrooxidation. ACS Appl. Mater. Interfaces 2019, 11, 20117-20124.
[14]
Xue, Q.; Bai, J.; Han, C. C.; Chen, P.; Jiang, J. X.; Chen, Y. Au nanowires@Pd-polyethylenimine nanohybrids as highly active and methanol-tolerant electrocatalysts toward oxygen reduction reaction in alkaline media. ACS Catal. 2018, 8, 11287-11295.
[15]
Hernández, A. R.; Manríquez, M. E.; Mejia, A. E.; Estrada, E. M. A. Shape effect of AuPd core-shell nanostructures on the electrocatalytical activity for oxygen reduction reaction in acid medium. Electrocatalysis 2018, 9, 752-761.
[16]
Zong, Z.; Xu, K. B.; Li, D. L.; Tang, Z. H.; He, W.; Liu, Z.; Wang, X. F.; Tian, Y. Peptide templated Au@Pd core-shell structures as efficient bi-functional electrocatalysts for both oxygen reduction and hydrogen evolution reactions. J. Catal. 2018, 361, 168-176.
[17]
Yang, L.; Li, G. Q.; Chang, J. F.; Ge, J. J.; Liu, C. P.; Vladimir, F.; Wang, G. L.; Jin, Z.; Xing, W. Sea urchin-like Aucore@Pdshell electrocatalysts with high FAOR performance: Coefficient of lattice strain and electrochemical surface area. Appl. Catal. B Environ. 2020, 260, 118200.
[18]
Chen, D.; Li, J. Q.; Cui, P. L.; Liu, H.; Yang, J. Gold-catalyzed formation of core-shell gold-palladium nanoparticles with palladium shells up to three atomic layers. J. Mater. Chem. A 2016, 4, 3813-3821.
[19]
Wang, K.; Qin, Y. N.; Lv, F.; Li, M. Q.; Liu, Q.; Lin, F.; Feng, J. R.; Yang, C.; Gao, P.; Guo, S. J. Intermetallic Pd3Pb nanoplates enhance oxygen reduction catalysis with excellent methanol tolerance. Small Methods 2018, 2, 1700331.
[20]
Deng, Y. Y.; Xue, H. R.; Lu, S. L.; Song, Y. J.; Cao, X. Q.; Wang, L.; Wang, H. J.; Zhao, Y. L.; Gu, H. W. Trimetallic Au@PtPd mesoporous nanorods as efficient electrocatalysts for the oxygen reduction reaction. ACS Appl. Energy Mater. 2018, 1, 4891-4898.
[21]
Tsuji, M.; Takemura, K.; Shiraishi, C.; Ikedo, K.; Uto, K.; Yajima, A.; Hattori, M.; Nakashima, Y.; Fukutomi, K.; Tsuruda, K. et al. Syntheses of Au@PdAg and Au@PdAg@Ag core-shell nanorods through distortion-induced alloying between Pd shells and Ag atoms over Au nanorods. J. Phys. Chem. C 2015, 119, 10811-10823.
[22]
Shang, C. S.; Hong, W.; Wang, J.; Wang, E. Carbon supported trimetallic nickel-palladium-gold hollow nanoparticles with superior catalytic activity for methanol electrooxidation. J. Power Sources 2015, 285, 12-15.
[23]
Luo, L. M.; Zhang, R. H.; Chen, D.; Hu, Q. Y.; Zhou, X. W. Synthesis of 3D thornbush-like trimetallic CoAuPd nanocatalysts and electrochemical dealloying for methanol oxidation and oxygen reduction reaction. ACS Appl. Energy Mater. 2018, 1, 2619-2629.
[24]
Li, X. K.; Zhang, C. M.; Du, C.; Zhuang, Z. H.; Zheng, F. Q.; Li, P.; Zhang, Z. W.; Chen, W. Trimetallic Au@PdPt core-shell nanoparticles with ultrathin PdPt skin as highly stable electrocatalysts for the oxygen reduction reaction in acid solution. Sci. China Chem. 2019, 62, 378-384.
[25]
He, D. S.; He, D. P.; Wang, J.; Lin, Y.; Yin, P. Q.; Hong, X.; Wu, Y.; Li, Y. D. Ultrathin icosahedral Pt-enriched nanocage with excellent oxygen reduction reaction activity. J. Am. Chem. Soc. 2016, 138, 1494-1497.
[26]
Wang, L.; Yamauchi, Y. Metallic nanocages: Synthesis of bimetallic Pt-Pd hollow nanoparticles with dendritic shells by selective chemical etching. J. Am. Chem. Soc. 2013, 135, 16762-16765.
[27]
Lv, H.; Sun, L. Z.; Xu, D. D.; Henzie, J.; Yamauchi, Y.; Liu, B. Mesoporous palladium-boron alloy nanospheres. J. Mater. Chem. A 2019, 7, 24877-24883.
[28]
Yan, X. X.; Hu, X. J.; Fu, G. T.; Xu, L.; Lee, J. M.; Tang, Y. W. Facile synthesis of porous Pd3Pt half-shells with rich “active sites” as efficient catalysts for formic acid oxidation. Small 2018, 14, 1703940.
[29]
Gong, M. X.; Deng, Z. P.; Xiao, D. D.; Han, L. L.; Zhao, T. H.; Lu, Y.; Shen, T.; Liu, X. P.; Lin, R. Q.; Huang, T. et al. One-nanometer- thick Pt3Ni bimetallic alloy nanowires advanced oxygen reduction reaction: Integrating multiple advantages into one catalyst. ACS Catal. 2019, 9, 4488-4494.
[30]
Jiang, X.; Qiu, X. Y.; Fu, G. T.; Sun, J. Z.; Huang, Z. N.; Sun, D. M.; Xu, L.; Zhou, J. C.; Tang, Y. W. Highly simple and rapid synthesis of ultrathin gold nanowires with (111)-dominant facets and enhanced electrocatalytic properties. J. Mater. Chem. A 2018, 6, 17682-17687.
[31]
Jiang, X.; Fu, G. T.; Wu, X.; Liu, Y.; Zhang, M. Y.; Sun, D. M.; Xu, L.; Tang, Y. W. Ultrathin AgPt alloy nanowires as a high-performance electrocatalyst for formic acid oxidation. Nano Res. 2018, 11, 499-510.
[32]
Fu, G. T.; Jiang, X.; Chen, Y. F.; Xu, L.; Sun, D. M.; Lee, J. M.; Tang, Y. W. Robust bifunctional oxygen electrocatalyst with a “rigid and flexible” structure for air-cathodes. NPG Asia Mater. 2018, 10, 618-629.
[33]
Li, M. F.; Zhao, Z. P.; Cheng, T.; Fortunelli, A.; Chen, C. Y.; Yu, R.; Zhang, Q. H.; Gu, L.; Merinov, B. V.; Lin, Z. Y. et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 2016, 354, 1414-1419.
[34]
Feng, Y. G.; Bu, L. Z.; Guo, S. J.; Guo, J.; Huang, X. Q. 3D platinum- lead nanowire networks as highly efficient ethylene glycol oxidation electrocatalysts. Small 2016, 12, 4464-4470.
[35]
Jiang, X.; Wang, J. X.; Huang, T.; Fu, G. T.; Tang, Y. W.; Qiu, X. Y.; Zhou, J. C.; Lee, J. M. Sub-5 nm palladium nanoparticles in situ embedded in N-doped carbon nanoframes: Facile synthesis, excellent sinter resistance and electrocatalytic properties. J. Mater. Chem. A 2019, 7, 26243-26249.
[36]
Fu, G. T.; Liu, Y.; Wu, Z. X.; Lee, J. M. 3D robust carbon aerogels immobilized with Pd3Pb nanoparticles for oxygen reduction catalysis. ACS Appl. Nano Mater. 2018, 1, 1904-1911.
[37]
Fu, G. T.; Jiang, X.; Gong, M. X.; Chen, Y.; Tang, Y. W.; Lin, J.; Lu, T. H. Highly branched platinum nanolance assemblies by polyallylamine functionalization as superior active, stable, and alcohol-tolerant oxygen reduction electrocatalysts. Nanoscale 2014, 6, 8226-8234.
[38]
Zhao, Y. P.; Tao, L.; Dang, W.; Wang, L. L.; Xia, M. R.; Wang, B.; Liu, M. M.; Gao, F. M.; Zhang, J. J.; Zhao, Y. F. High-indexed PtNi alloy skin spiraled on Pd nanowires for highly efficient oxygen reduction reaction catalysis. Small 2019, 15, 1900288.
[39]
Li, T. F.; Wang, Y.; Tang, Y. Z.; Xu, L.; Si, L.; Fu, G. T.; Sun, D. M.; Tang, Y. W. White phosphorus derived PdAu-P ternary alloy for efficient methanol electrooxidation. Catal. Sci. Technol. 2017, 7, 3355-3360.
[40]
Liu, Z. Y.; Fu, G. T.; Li, J. H.; Liu, Z. Q.; Xu, L.; Sun, D. M.; Tang, Y. W. Facile synthesis based on novel carbon-supported cyanogel of structurally ordered Pd3Fe/C as electrocatalyst for formic acid oxidation. Nano Res. 2018, 11, 4686-4696.
[41]
Yang, D. J.; Kamienchick, I.; Youn, D. Y.; Rothschild, A.; Kim, I. D. Ultrasensitive and highly selective gas sensors based on electrospun SnO2 nanofibers modified by Pd loading. Adv. Funct. Mater. 2010, 20, 4258-4264.
[42]
Weinert, M.; Watson, R. E. Core-level shifts in bulk alloys and surface adlayers. Phys. Rev. B 1995, 51, 17168-17180.
[43]
Fu, G. T.; Liu, Z. Y.; Chen, Y.; Lin, J.; Tang, Y. W.; Lu, T. H. Synthesis and electrocatalytic activity of Au@Pd core-shell nanothorns for the oxygen reduction reaction. Nano Res. 2014, 7, 1205-1214.
[44]
Wakisaka, M.; Mitsui, S.; Hirose, Y.; Kawashima, K.; Uchida, H.; Watanabe, M. Electronic structures of Pt-Co and Pt-Ru alloys for CO-tolerant anode catalysts in polymer electrolyte fuel cells studied by EC-XPS. J. Phys. Chem. B 2006, 110, 23489-23496.
[45]
Luan, C. L.; Zhou, Q. X.; Wang, Y.; Xiao, Y.; Dai, X. P.; Huang, X. L.; Zhang, X. A general strategy assisted with dual reductants and dual protecting agents for preparing Pt-based alloys with high-index facets and excellent electrocatalytic performance. Small 2017, 13, 1702617.
[46]
Geng, J. R.; Zhu, Z.; Bai, X. X.; Li, F. J.; Chen, J. Hot-injection synthesis of PtCu3 concave nanocubes with high-index facets for electrocatalytic oxidation of methanol and formic acid. ACS Appl. Energy Mater. 2020, 3, 1010-1016.
[47]
Zhang, P. F.; Dai, X. P.; Zhang, X.; Chen, Z. K.; Yang, Y.; Sun, H.; Wang, X. B.; Wang, H.; Wang, M. L.; Su, H. X. et al. One-pot synthesis of ternary Pt-Ni-Cu nanocrystals with high catalytic performance. Chem. Mater. 2015, 27, 6402-6410.
[48]
Ganduglia-Pirovano, M. V.; Natoli, V.; Cohen, M. H.; Kudrnovský, J.; Turek, I. Potential, core-level, and d band shifts at transition-metal surfaces. Phys. Rev. B 1996, 54, 8892-8898.
[49]
Lee, K.; Savadogo, O.; Ishihara, A.; Mitsushima, S.; Kamiya, N.; Ota, K. I. Methanol-tolerant oxygen reduction electrocatalysts based on Pd-3D transition metal alloys for direct methanol fuel Cells. J. Electrochem. Soc. 2006, 153, A20-A24.
[50]
Tan, Y. M.; Fan, J. M.; Chen, G. X.; Zheng, N. F.; Xie, Q. J. Au/Pt and Au/Pt3Ni nanowires as self-supported electrocatalysts with high activity and durability for oxygen reduction. Chem. Commun. 2011, 47, 11624-11626.
[51]
Wang, C.; van der Vliet, D.; More, K. L.; Zaluzec, N. J.; Peng, S.; Sun, S. H.; Daimon, H.; Wang, G. F.; Greeley, J.; Pearson, J. et al. Multimetallic Au/FePt3 nanoparticles as highly durable electrocatalyst. Nano Lett. 2011, 11, 919-926.
[52]
You, H.; Zurawski, D. J.; Nagy, Z.; Yonco, R. M. In-situ X-ray reflectivity study of incipient oxidation of Pt(111) surface in electrolyte solutions. J. Chem. Phys. 1994, 100, 4699-4702.
[53]
Komanicky, V.; Chang, K. C.; Menzel, A.; Markovic, N. M.; You, H.; Wang, X.; Myers, D. Stability and dissolution of platinum surfaces in perchloric acid. J. Electrochem. Soc. 2006, 153, B446-B451.
Nano Research
Pages 2691-2696
Cite this article:
Jiang X, Xiong Y, Zhao R, et al. Trimetallic Au@PdPb nanowires for oxygen reduction reaction. Nano Research, 2020, 13(10): 2691-2696. https://doi.org/10.1007/s12274-020-2911-9
Topics:

833

Views

42

Crossref

N/A

Web of Science

42

Scopus

5

CSCD

Altmetrics

Received: 21 April 2020
Revised: 26 May 2020
Accepted: 30 May 2020
Published: 05 October 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return