AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Reliable high temperature, high humidity flexible thin film encapsulation using Al2O3/MgO nanolaminates for flexible OLEDs

Ki Suk Kang1So Yeong Jeong1Eun Gyo Jeong2( )Kyung Cheol Choi1( )
School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
Department of Clothing and Textiles, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
Show Author Information

Graphical Abstract

Abstract

Since most organic materials are very sensitive to moisture and oxygen, organic light emitting diodes (OLEDs) require an encapsulation layer to protect the active layer from these gases. Since light, flexible and portable OLEDs are being employed in more diverse climates and environmental conditions, the OLED encapsulation layer must retain robust mechanical properties and stability in high temperature/high humidity conditions. Al2O3 films have demonstrated excellent barrier performance, but they readily hydrolyze when exposed to prolonged harsh environments. In this study, we fabricated a thin film encapsulation (TFE) film that was resistant to hydrolysis, using Al2O3/MgO (AM) nanolaminates. MgO has superior resistance to harsh environments, and the aluminate phase generated by the chemical reaction of Al2O3 and MgO provided excellent barrier performance, even after storage in harsh conditions. A multi-barrier fabricated using the AM nanolaminate showed excellent barrier performance, close to the level required by OLEDs. It did not significantly deteriorate even after a bending test of 1,000 iterations at 0.63% strain. After 1,000 cycle of bending, the electrical properties of the passivated OLEDs were not significantly degraded at shelf-lifetime test where the fabricated device was stored for 50 days in a harsh environment of 60 °C, 90% relative humidity. The multi-barrier shows the best performance compared to previous studies on flexible encapsulation that can be used in harsh environments.

Electronic Supplementary Material

Download File(s)
12274_2020_2915_MOESM1_ESM.pdf (1.7 MB)

References

[1]
Schaer, M.; Nüesch, F.; Berner, D.; Leo, W.; Zuppiroli, L. Water vapor and oxygen degradation mechanisms in organic light emitting diodes. Adv. Funct. Mater. 2001, 11, 116-121.
[2]
Lee, S. M.; Kwon, J. H.; Kwon, S.; Choi, K. C. A review of flexible OLEDs toward highly durable unusual displays. IEEE Trans. Electron Devices 2017, 64, 1922-1931.
[3]
Jeong, E. G.; Jeon, Y. M.; Cho, S. H.; Choi, K. C.; Textile-based washable polymer solar cells for optoelectronic modules: Toward self-powered smart clothing. Energy Environ. Sci. 2019, 12, 1878-1889.
[4]
Burrows, P. E.; Bulovic, V.; Forrest, S. R.; Sapochak, L. S.; McCarty, D. M.; Thompson, M. E. Reliability and degradation of organic light emitting devices. Appl. Phys. Lett. 1994, 65, 2922-2924.
[5]
Meyer, J.; Schneidenbach, D.; Winkler, T.; Hamwi, S.; Weimann, T.; Hinze, P.; Ammermann, S.; Johannes, H. H.; Riedl, T.; Kowalsky, W. Reliable thin film encapsulation for organic light emitting diodes grown by low-temperature atomic layer deposition. Appl. Phys. Lett. 2009, 94, 233305.
[6]
Park, M. H.; Kim, J. Y.; Han, T. H.; Kim, T. S.; Kim, H.; Lee, T. W. Flexible lamination encapsulation. Adv. Mater. 2015, 27, 4308-4314.
[7]
Lewis, J. S.; Weaver, M. S. Thin-film permeation-barrier technology for flexible organic light-emitting devices. IEEE J. Sel. Top. Quantum Electron. 2004, 10, 45-57.
[8]
Seo, H. K.; Park, M. H.; Kim, Y. H.; Kwon, S. J.; Jeong, S. H.; Lee, T. W. Laminated graphene films for flexible transparent thin film encapsulation. ACS Appl. Mater. Interfaces 2016, 8, 14725-14731.
[9]
Seo, S. W.; Jung, E.; Chae, H.; Cho, S. M. Optimization of Al2O3/ ZrO2 nanolaminate structure for thin-film encapsulation of OLEDs. Org. Electron. 2012, 13, 2436-2441.
[10]
Lin, Y. Y.; Chang, Y. N.; Tseng, M. H.; Wang, C. C.; Tsai, F. Y. Air-stable flexible organic light-emitting diodes enabled by atomic layer deposition. Nanotechnology 2015, 26, 024005.
[11]
Choi, J. H.; Kim, Y. M.; Park, Y. W.; Park, T. H.; Jeong, J. W.; Choi, H. J.; Song, E. H.; Lee, J. W.; Kim, C. H.; Ju, B. K. Highly conformal SiO2/Al2O3 nanolaminate gas-diffusion barriers for large-area flexible electronics applications. Nanotechnolog. 2010, 21, 475203.
[12]
Yoon, K. H.; Kim, H. S.; Han, K. S.; Kim, S. H.; Lee, Y. E. K.; Shrestha, N. K.; Song, S. Y.; Sung, M. M. Extremely high barrier performance of organic-inorganic nanolaminated thin films for organic light-emitting diodes. ACS Appl. Mater. Interfaces 2017, 9, 5399-5408.
[13]
Han, Y. C.; Kim, E.; Kim, W.; Im, H. G.; Bae, B. S.; Choi, K. C. A flexible moisture barrier comprised of a SiO2-embedded organic- inorganic hybrid nanocomposite and Al2O3 for thin-film encapsulation of OLEDs. Org. Electron. 2013, 14, 1435-1440.
[14]
Kim, E.; Han, Y.; Kim, W.; Choi, K. C.; Im, H. G.; Bae, B. S. Thin film encapsulation for organic light emitting diodes using a multi- barrier composed of MgO prepared by atomic layer deposition and hybrid materials. Org. Electron. 2013, 14, 1737-1743.
[15]
Lee, Y. G.; Park, J. J.; Kee, I. S.; Shim, H. S.; Ko, I. H.; Choi, Y. H.; Bulliard, X.; Kim, S. Y.; Kim, J. M. P-214: Ultra thin-film encapsulation for AMOLED displays. SID Symp. Dig. Tech. Pap. 2008, 39, 2011-2013.
[16]
Choi, S.; Kwon, S.; Kim, H.; Kim, W.; Kwon, J. H.; Lim, M. S.; Lee, H. S.; Choi, K. C. Highly flexible and efficient fabric-based organic light-emitting devices for clothing-shaped wearable displays. Sci. Rep. 2017, 7, 6424.
[17]
Kwon, S.; Kim, H.; Choi, S.; Jeong, E. G.; Kim, D.; Lee, S.; Lee, H. S.; Seo, Y. C.; Choi, K. C. Weavable and highly efficient organic light-emitting fibers for wearable electronics: A scalable, low- temperature process. Nano Lett. 2018, 18, 347-356.
[18]
Yokota, T.; Zalar, P.; Kaltenbrunner, M.; Jinno, H.; Matsuhisa, N.; Kitanosako, H.; Tachibana, Y.; Yukita, W.; Koizumi, M.; Someya, T. Ultraflexible organic photonic skin. Sci. Adv. 2016, 2, e1501856.
[19]
Yin, D.; Feng, J.; Ma, R.; Liu, Y. F.; Zhang, Y. L.; Zhang, X. L.; Bi, Y. G.; Chen, Q. D.; Sun, H. B. Efficient and mechanically robust stretchable organic light-emitting devices by a laser-programmable buckling process. Nat. Commun. 2016, 7, 11573.
[20]
Kwon, J. H.; Jeon, Y.; Choi, S.; Park, J. W.; Kim, H.; Choi, K. C. Functional design of highly robust and flexible thin-film encapsulation composed of quasi-perfect sublayers for transparent, flexible displays. ACS Appl. Mater. Interfaces 2017, 9, 43983-43992.
[21]
Park, J. S.; Chae, H.; Chung, H. K.; Lee, S. I. Thin film encapsulation for flexible AM-OLED: A review. Semicond. Sci. Technol. 2011, 26, 034001.
[22]
Park, J.; Yoon, H. R;, Khan, M. A.; Cho, S.; Sung, M. M.; Selective infiltration in polymer hybrid thin films as a gas-encapsulation layer for stretchable electronics. ACS Appl. Mater. Interfaces 2020, 12, 8817-8825.
[23]
Kwon, J. H.; Kim, E.; Im, H. G.; Bae, B. S.; Chang, K. S.; Ko Park, S. H.; Choi, K. C. Metal-containing thin-film encapsulation with flexibility and heat transfer. J. Inf. Disp. 2015, 16, 123-128.
[24]
Dameron, A. A.; Davidson, S. D.; Burton, B. B.; Carcia, P. F.; McLean, R. S.; George, S. M. Gas diffusion barriers on polymers using multilayers fabricated by Al2O3 and rapid SiO2 atomic layer deposition. J. Phys. Chem. C. 2008, 112, 4573-4580.
[25]
Meyer, J.; Görrn, P.; Bertram, F.; Hamwi, S.; Winkler, T.; Johannes, H. H.; Weimann, T.; Hinze, P.; Riedl, T.; Kowalsky, W. Al2O3/ZrO2 nanolaminates as ultrahigh gas-diffusion barriers—A strategy for reliable encapsulation of organic electronics. Adv. Mater. 2009, 21, 1845-1849.
[26]
Kim, L. H.; Kim, K.; Park, S.; Jeong, Y. J.; Kim, H.; Chung, D. S.; Kim, S. H.; Park, C. E. Al2O3/TiO2 nanolaminate thin film encapsulation for organic thin film transistors via plasma-enhanced atomic layer deposition. ACS Appl. Mater. Interfaces 2014, 6, 6731-6738.
[27]
Choi, D. W.; Kim, S. J.; Lee, J. H.; Chung, K. B.; Park, J. S. A study of thin film encapsulation on polymer substrate using low temperature hybrid ZnO/Al2O3 layers atomic layer deposition. Curr. Appl. Phys. 2012, 12, S19-S23.
[28]
Meyer, J.; Schmidt, H.; Kowalsky, W.; Riedl, T.; Kahn, A. The origin of low water vapor transmission rates through Al2O3/ZrO2 nanolaminate gas-diffusion barriers grown by atomic layer deposition. Appl. Phys. Lett. 2010, 96, 243308.
[29]
Singh, A.; Klumbies, H.; Schröder, U.; Müller-Meskamp, L.; Geidel, M.; Knaut, M.; Hoßbach, C.; Albert, M.; Leo, K.; Mikolajick, T. Barrier performance optimization of atomic layer deposited diffusion barriers for organic light emitting diodes using X-ray reflectivity investigations. Appl. Phys. Lett. 2013, 103, 233302.
[30]
Vangelista, S.; Mantovan, R.; Lamperti, A.; Tallarida, G.; Kutrzeba- Kotowska, B.; Spiga, S.; Fanciulli, M. Low-temperature atomic layer deposition of MgO thin films on Si. J. Phys. D Appl. Phys. 2013, 46, 485304.
[31]
Graff, G. L.; Williford, R. E.; Burrows, P. E. Mechanisms of vapor permeation through multilayer barrier films: Lag time versus equilibrium permeation. J. Appl. Phys. 2004, 96, 1840-1849.
[32]
Chatham, H. Oxygen diffusion barrier properties of transparent oxide coatings on polymeric substrates. Surf. Coatings Technol. 1996, 78, 1-9.
[33]
Da Silva Sobrinho, A. S.; Latrèche, M.; Czeremuszkin, G.; Klemberg- Sapieha, J. E.; Wertheimer, M. R. Transparent barrier coatings on polyethylene terephthalate by single- and dual-frequency plasma- enhanced chemical vapor deposition. J. Vac. Sci. Technol. A 1998, 16, 3190-3198.
[34]
Henry, B. M.; Erlat, A. G.; McGuigan, A.; Grovenor, C. R. M.; Briggs, G. A. D.; Tsukahara, Y.; Miyamoto, T.; Noguchi, N.; Niijima, T. Characterization of transparent aluminium oxide and indium tin oxide layers on polymer substrates. Thin Solid Films 2001, 382, 194-201.
[35]
Jeong, E. G.; Kwon, J. H.; Kang, K. S.; Jeong, S. Y.; Choi, K. C. A review of highly reliable flexible encapsulation technologies towards rollable and foldable OLEDs. J. Inf. Disp. 2019, 21, 19-32.
[36]
Kwon, S.; Hwang, Y. H.; Nam, M.; Chae, H.; Lee, H. S.; Jeon, Y.; Lee, S.; Kim, C. Y.; Choi, S.; Jeong, E. G.; Choi, K. C. Recent progress of fiber shaped lighting devices for smart display applications—A fibertronic perspective. Adv. Mater. 2019, 32, 1903488.
[37]
Li, M.; Xu, M.; Zou, J. H.; Tao, H.; Wang, L.; Zhou, Z. W.; Peng, J. B. Realization of Al2O3/MgO laminated structure at low temperature for thin film encapsulation in organic light-emitting diodes. Nanotechnology 2016, 27, 494003.
[38]
Wang, L.; Ruan, C. P.; Li, M.; Zou, J. H.; Tao, H.; Peng, J. B.; Xu, M. Enhanced moisture barrier performance for ALD-encapsulated OLEDs by introducing an organic protective layer. J. Mater. Chem. C 2017, 5, 4017-4024.
[39]
Jin, J.; Lee, J. J.; Bae, B. S.; Park, S. J.; Yoo, S.; Jung, K. Silica nanoparticle-embedded sol-gel organic/inorganic hybrid nanocomposite for transparent OLED encapsulation. Org. Electron. 2012, 13, 53-57.
[40]
Paetzold, R.; Winnacker, A.; Henseler, D.; Cesari, V.; Heuser, K. Permeation rate measurements by electrical analysis of calcium corrosion. Rev. Sci. Instrum. 2003, 74, 5147-5150.
[41]
Tadanaga, K.; Katata, N.; Minami, T. Super-water-repellent Al2O3 coating films with high transparency. J. Am. Ceram. Soc. 1997, 80, 1040-1042.
[42]
Pasieczna-Patkowska, S.; Ryczkowski, J. Spectroscopic studies of alumina supported nickel catalysts precursors: Part II—Catalysts prepared from alkaline solutions. Ann. UMCS. Chem. 2010, 65, 121-131.
[43]
Hausmann, D. M.; Gordon, R. G. Surface morphology and crystallinity control in the atomic layer deposition (ALD) of hafnium and zirconium oxide thin films. J. Cryst. Growth 2003, 249, 251-261.
[44]
Li, M.; Xu, M.; Zou, J. H.; Tao, H.; Wang, L.; Zhou, Z. W.; Peng, J. B. Realization of Al2O3/MgO laminated structure at low temperature for thin film encapsulation in organic light-emitting diodes. Nanotechnology 2016, 27, 494003.
[45]
Choi, K.C.; Kwon, J. H. Encapsulation structure for transparent flexible organic electronic device. U.S. Patent 10,529,951, January 7, 2020.
[46]
Allred, A. L. Electronegativity values from thermochemical data. J. Inorg. Nucl. Chem. 1961, 17, 215-221.
[47]
Hall, E. O. The deformation and ageing of mild steel: III discussion of results. Proc. Phys. Soc. Sect. B 1951, 64, 747-753.
[48]
Jeong, E. G.; Han, Y. C.; Im, H. G.; Bae, B. S.; Choi, K. C. Highly reliable hybrid nano-stratified moisture barrier for encapsulating flexible OLEDs. Org. Electron. 2016, 33, 150-155.
[49]
Jeong, E. G.; Kwon, S.; Han, J. H.; Im, H. G.; Bae, B. S.; Choi, K. C. A mechanically enhanced hybrid nano-stratified barrier with a defect suppression mechanism for highly reliable flexible OLEDs. Nanoscale 2017, 9, 6370-6379.
[50]
Choi, K. C.; Jeong, E. G. Nano stratified encapsulation structure, method of manufacturing the same, and flexible organic light emitting diode device. Republic of Korea Patent KR101988576B1, June 13, 2019.
Nano Research
Pages 2716-2725
Cite this article:
Kang KS, Jeong SY, Jeong EG, et al. Reliable high temperature, high humidity flexible thin film encapsulation using Al2O3/MgO nanolaminates for flexible OLEDs. Nano Research, 2020, 13(10): 2716-2725. https://doi.org/10.1007/s12274-020-2915-5
Topics:

730

Views

36

Crossref

N/A

Web of Science

35

Scopus

5

CSCD

Altmetrics

Received: 22 March 2020
Revised: 02 June 2020
Accepted: 04 June 2020
Published: 05 October 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return