AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Strain engineering in single-, bi- and tri-layer MoS2, MoSe2, WS2 and WSe2

Felix Carrascoso§Hao Li§Riccardo Frisenda( )Andres Castellanos-Gomez ( )
Materials Science Factory, Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain

§ Felix Carrascoso and Hao Li contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Strain is a powerful tool to modify the optical properties of semiconducting transition metal dichalcogenides like MoS2, MoSe2, WS2 and WSe2. In this work we provide a thorough description of the technical details to perform uniaxial strain measurements on these two-dimensional semiconductors and we provide a straightforward calibration method to determine the amount of applied strain with high accuracy. We then employ reflectance spectroscopy to analyze the strain tunability of the electronic properties of single-, bi- and tri-layer MoS2, MoSe2, WS2 and WSe2. Finally, we quantify the flake-to-flake variability by analyzing 15 different single-layer MoS2 flakes.

Electronic Supplementary Material

Download File(s)
12274_2020_2918_MOESM1_ESM.pdf (5.4 MB)

References

[1]
R. Roldán,; A. Castellanos-Gomez,; E. Cappelluti,; F. Guinea Strain engineering in semiconducting two-dimensional crystals. J. Phys. Condens. Matter 2015, 27, 313201.
[2]
B. Amorim,; A. Cortijo,; F. de Juan,; A. G. Grushin,; F. Guinea,; A. Gutiérrez-Rubio,; H. Ochoa,; V. Parente,; P. San-Jose,; J. Schiefele, et al. Novel effects of strains in graphene and other two dimensional materials. Phys. Rep. 2016, 617, 1-54.
[3]
C. Lee,; X. D. Wei,; J. W. Kysar,; J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 32, 385-388.
[4]
S. Bertolazzi,; J. Brivio,; A. Kis, Stretching and breaking of ultrathin MoS2. ACS Nano 2011, 5, 9703-9709.
[5]
A. Castellanos-Gomez,; M. Poot,; G. A. Steele,; H. S. J. van der Zant,; N. Agraït,; G. Rubio-Bollinger, Elastic properties of freely suspended MoS2 nanosheets. Adv. Mater. 2012, 24, 772-775.
[6]
A. Castellanos-Gomez,; V. Singh,; H. S. J. van der Zant,; G. A. Steele, Mechanics of freely-suspended ultrathin layered materials. Ann. Phys. 2015, 527, 27-44.
[7]
H. J. Conley,; B. Wang,; J. I. Ziegler,; R. F. Haglund, Jr; S. T. Pantelides,; K. I. Bolotin, Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 2013, 13, 3626-3630.
[8]
K. L. He,; C. Poole,; K. F. Mak,; J. Shan, Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. Nano Lett. 2013, 13, 2931-2936.
[9]
A. Castellanos-Gomez,; R. Roldán,; E. Cappelluti,; M. Buscema,; F. Guinea; H. S. J. van der Zant,; G. A. Steele, Local strain engineering in atomically thin MoS2. Nano Lett. 2013, 13, 5361-5366.
[10]
Y. Y. Hui,; X. F. Liu,; W. J. Jie,; N. Y. Chan,; J. H. Hao,; Y. T. Hsu,; L. J. Li,; W. L. Guo,; S. P. Lau, Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet. ACS Nano 2013, 7, 7126-7131.
[11]
D. Lloyd,; X. H. Liu,; J. W. Christopher,; L. Cantley,; A. Wadehra,; B. L. Kim,; B. B. Goldberg,; A. K. Swan,; J. S. Bunch, Band gap engineering with ultralarge biaxial strains in suspended monolayer MoS2. Nano Lett. 2016, 16, 5836-5841.
[12]
C. R. Zhu,; G. Wang,; B. L. Liu,; X. Marie,; X. F. Qiao,; X. Zhang,; X. X. Wu,; H. Fan,; P. H. Tan,; T. Amand, et al. Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2. Phys. Rev. B 2013, 8, 121301.
[13]
Y. L. Wang,; C. X. Cong,; W. H. Yang,; J. Z. Shang,; N. Peimyoo,; Y. Chen,; J. Y. Kang,; J. P. Wang,; W. Huang,; T. Yu, Strain-induced direct- indirect band gap transition and phonon modulation in monolayer WS2. Nano Res. 2015, 8, 2562-2572.
[14]
Z. Liu,; M. Amani,; S. Najmaei,; Q. Xu,; X. L. Zou,; W. Zhou,; T. Yu,; C. Y. Qiu,; A. G. Birdwell,; F. J. Crowne, et al. Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition. Nat. Commun. 2014, 5, 5246.
[15]
R. Frisenda,; M. Drüppel,; R. Schmidt,; S. M. de Vasconcellos,; D. P. de Lara,; R. Bratschitsch,; M. Rohlfing,; A. Castellanos-Gomez, Biaxial strain tuning of the optical properties of single-layer transition metal dichalcogenides. npj 2D Mater. Appl. 2017, 1, 10.
[16]
Q. H. Zhao,; R. Frisenda,; T. Wang,; A. Castellanos-Gomez, InSe: A two-dimensional semiconductor with superior flexibility. Nanoscale 2019, 11, 9845-9850.
[17]
N. S. Taghavi,; P. Gant,; P. Huang,; I. Niehues,; R. Schmidt,; S. M. de Vasconcellos,; R. Bratschitsch,; M. García-Hernández,; R. Frisenda,; A. Castellanos-Gomez, Thickness determination of MoS2, MoSe2, WS2 and WSe2 on transparent stamps used for deterministic transfer of 2D materials. Nano Res. 2019, 12, 1691-1695.
[18]
C. Backes,; A. M. Abdelkader,; C. Alonso,; A. Andrieux-Ledier,; R. Arenal,; J. Azpeitia,; N. Balakrishnan,; L. Banszerus,; J. Barjon,; R. Bartali, et al. Production and processing of graphene and related materials. 2D Mater. 2020, 7, 022001.
[19]
Y. Niu,; S. Gonzalez-Abad,; R. Frisenda,; P. Marauhn,; M. Drüppel,; P. Gant,; R. Schmidt,; N. S. Taghavi,; D. Barcons,; A. J. Molina-Mendoza, et al. Thickness-dependent differential reflectance spectra of monolayer and few-layer MoS2, MoSe2, WS2 and WSe2. Nanomaterials 2018, 8, 725.
[20]
A. Castellanos-Gomez,; M. Buscema,; R. Molenaar,; V. Singh,; L. Janssen,; H. S. J. van der Zant,; G. A. Steele, Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 2014, 1, 011002.
[21]
R. Frisenda,; E. Navarro-Moratalla,; P. Gant,; D. P. De Lara,; P. Jarillo-Herrero,; R. V. Gorbachev,; A. Castellanos-Gomez, Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials. Chem. Soc. Rev. 2018, 47, 53-68.
[22]
Q. H. Zhao,; T. Wang,; Y. K. Ryu,; R. Frisenda, An inexpensive system for the deterministic transfer of 2D materials. J. Phys. Mater., in press, .
[23]
R. Frisenda,; Y. Niu,; P. Gant,; A. J. Molina-Mendoza,; R. Schmidt,; R. Bratschitsch,; J. X. Liu,; L. Fu,; D. Dumcenco,; A. Kis, et al. Micro-reflectance and transmittance spectroscopy: A versatile and powerful tool to characterize 2D materials. J. Phys. D Appl. Phys. 2017, 5, 074002.
[24]
A. Chernikov,; T. C. Berkelbach,; H. M. Hill,; A. Rigosi,; Y. L. Li,; O. B. Aslan,; D. R. Reichman,; M. S. Hybertsen,; T. F. Heinz, Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys. Rev. Lett. 2014, 113, 076802.
[25]
A. Castellanos-Gomez,; J. Quereda,; H. P. van der Meulen,; N. Agraït,; G. Rubio-Bollinger, Spatially resolved optical absorption spectroscopy of single- and few-layer MoS2 by hyperspectral imaging. Nanotechnology 2016, 27, 115705.
[26]
I. Niehues,; R. Schmidt,; M. Drüppel,; P. Marauhn,; D. Christiansen,; M. Selig,; G. Berghäuser,; D. Wigger,; R. Schneider,; L. Braasch, et al. Strain control of exciton-phonon coupling in atomically thin semiconductors. Nano Lett. 2018, 18, 1751-1757.
[27]
I. Niehues,; A. Blob,; T. Stiehm,; R. Schmidt,; V. Jadriško,; B. Radatović,; D. Čapeta,; M. Kralj,; S. M. de Vasconcellos,; R. Bratschitsch, Strain transfer across grain boundaries in MoS2 monolayers grown by chemical vapor deposition. 2D Mater. 2018, 5, 031003.
[28]
I. Niehues,; A. Blob,; T. Stiehm,; S. M. de Vasconcellos,; R. Bratschitsch, Interlayer excitons in bilayer MoS2 under uniaxial tensile strain. Nanoscale 2019, 11, 12788-12792.
[29]
J. W. Christopher,; M. Vutukuru,; D. Lloyd,; J. S. Bunch,; B. B. Goldberg,; D. J. Bishop,; A. K. Swan, Monolayer MoS2 strained to 1.3% with a microelectromechanical system. J. Microelectromechan. Syst. 2019, 28, 254-263.
[30]
Z. W. Li,; Y. W. Lv,; L. W. Ren,; J. Li,; L. G. Kong,; Y. J. Zeng,; Q. Y. Tao,; R. X. Wu,; H. F. Ma,; B. Zhao, et al. Efficient strain modulation of 2D materials via polymer encapsulation. Nat. Commun. 2020, 11, 11518.
[31]
X. He,; H. Li,; Z. Y. Zhu,; Z. Y. Dai,; Y. Yang,; P. Yang,; Q. Zhang,; P. Li,; U. Schwingenschlogl,; X. X. Zhang, Strain engineering in monolayer WS2, MoS2, and the WS2/MoS2 heterostructure. Appl. Phys. Lett. 2016, 10, 173105.
[32]
Z. Liu,; M. Amani,; S. Najmaei,; Q. Xu,; X. L. Zou,; W. Zhou,; T. Yu,; C. Y. Qiu,; A. G. Birdwell,; F. J. Crowne, et al. Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition. Nat. Commun. 2014, 5, 5246.
[33]
A. P. John,; A. Thenapparambil,; M. Thalakulam, Strain-engineering the Schottky barrier and electrical transport on MoS2. Nanotechnology 2020, 31, 275703.
[34]
J. O. Island,; A. Kuc,; E. H. Diependaal,; R. Bratschitsch,; H. S. J. van der Zant,; T. Heine,; A. Castellanos-Gomez, Precise and reversible band gap tuning in single-layer MoSe2 by uniaxial strain. Nanoscale 2016, 8, 2589-2593.
[35]
L. Mennel,; M. Paur,; T. Mueller, Second harmonic generation in strained transition metal dichalcogenide monolayers: MoS2, MoSe2, WS2, and WSe2. APL Photonics 2019, 4, 034404.
[36]
Q. H. Zhang,; Z. Y. Chang,; G. Z. Xu,; Z. Y. Wang,; Y. P. Zhang,; Z. Q. Xu,; S. J. Chen,; Q. L. Bao,; J. Z. Liu,; Y. W. Mai, et al. Strain relaxation of monolayer WS2 on plastic substrate. Adv. Funct. Mater. 2016, 26, 8707-8714.
[37]
R. Schmidt,; I. Niehues,; R. Schneider,; M. Drüppel,; T. Deilmann,; M. Rohlfing,; S. Michaelis de Vasconcellos,; A. Castellanos-Gomez,; R. Bratschitsch, Reversible uniaxial strain tuning in atomically thin WSe2. 2D Mater. 2016, 3, 021011.
[38]
S. B. Desai,; G. Seol,; J. S. Kang,; H. Fang,; C. Battaglia,; R. Kapadia,; J. W. Ager,; J. Guo,; A. Javey, Strain-induced indirect to direct bandgap transition in multilayer WSe2. Nano Lett. 2014, 14, 4592-4597.
[39]
O. B. Aslan,; M. D. Deng,; T. F. Heinz, Strain tuning of excitons in monolayer WSe2. Phys. Rev. B 2018, 9, 115308.
[40]
O. B. Aslan,; M. D. Deng,; M. L. Brongersma,; T. F. Heinz, Strained bilayer WSe2 with reduced exciton-phonon coupling. Phys. Rev. B 2020, 10, 115305.
[41]
N. Y. Tang,; C. Du,; Q. Q. Wang,; H. R. Xu, Strain engineering in bilayer WSe2 over a large strain range. Microelectron. Eng. 2020, 22, 111202.
Nano Research
Pages 1698-1703
Cite this article:
Carrascoso F, Li H, Frisenda R, et al. Strain engineering in single-, bi- and tri-layer MoS2, MoSe2, WS2 and WSe2. Nano Research, 2021, 14(6): 1698-1703. https://doi.org/10.1007/s12274-020-2918-2
Topics:
Part of a topical collection:

852

Views

76

Crossref

N/A

Web of Science

79

Scopus

5

CSCD

Altmetrics

Received: 28 April 2020
Revised: 23 May 2020
Accepted: 05 June 2020
Published: 03 July 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return