AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Gate-tunable linear magnetoresistance in molybdenum disulfide field-effect transistors with graphene insertion layer

Hao Huang1,§Hongming Guan2,§Meng Su1Xiaoyue Zhang2Yuan Liu3Chuansheng Liu1Zhihong Zhang2Kaihui Liu2Lei Liao1,3( )Ning Tang2( )
School of Physics and Technology, Wuhan University, Wuhan 430072, China
State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
Key Laboratory for Micro-/Nano-Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China

§ Hao Huang and Hongming Guan contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Molybdenum disulfide (MoS2) holds great promise as atomically thin two-dimensional (2D) semiconductor for future electronics and opto-electronics. In this report, we study the magnetoresistance (MR) of MoS2 field-effect transistors (FETs) with graphene insertion layer at the contact interface. Owing to the unique device structure and high-quality contact interface, a gate-tunable linear MR up to 67% is observed at 2 K. By comparing with the MRs of graphene FETs and MoS2 FETs with conventional metal contact, it is found that this unusual MR is most likely to be originated from the contact interfaces between graphene and MoS2, and can be explained by the classical linear MR model caused by spatial fluctuation of carrier mobility. Our study demonstrates large MR responses in MoS2-based systems through heterojunction design, shedding lights for the future magneto-electronics and van der Waals heterostructures.

Electronic Supplementary Material

Download File(s)
12274_2020_2922_MOESM1_ESM.pdf (1.5 MB)

References

[1]
R. E. Peierls, Quantum Theory of Solids; Clarendon Press, Oxford, 1955.
[2]
M. M. Parish,; P. B. Littlewood, Non-saturating magnetoresistance in heavily disordered semiconductors. Nature 2003, 426, 162-165.
[3]
R. Xu,; A. Husmann,; T. F. Rosenbaum,; M. L. Saboungi,; J. E. Enderby,; P. B. Littlewood, Large magnetoresistance in non-magnetic silver chalcogenides. Nature 1997, 390, 57-60.
[4]
M. Lee,; T. F. Rosenbaum,; M. L. Saboungi,; H. S. Schnyders, Band-gap tuning and linear magnetoresistance in the silver chalcogenides. Phys. Rev. Lett. 2002, 88, 066602.
[5]
C. M. Wang,; X. L. Lei, Linear magnetoresistance on the topological surface. Phys. Rev. B 2012, 86, 035442.
[6]
B. A. Assaf,; T. Cardinal,; P. Wei,; F. Katmis,; J. S. Moodera,; D. Heiman, Linear magnetoresistance in topological insulator thin films: Quantum phase coherence effects at high temperatures. Appl. Phys. Lett. 2013, 102, 012102.
[7]
G. M. Gusev,; E. B. Olshanetsky,; Z. D. Kvon,; N. N. Mikhailov,; S. A. Dvoretsky, Linear magnetoresistance in hgte quantum wells. Phys. Rev. B 2013, 87, 081311.
[8]
W. J. Wang,; K. H. Gao,; Z. Q. Li,; T. Lin,; J. Li,; C. Yu,; Z. H. Feng, Classical linear magnetoresistance in epitaxial graphene on SiC. Appl. Phys. Lett. 2014, 105, 182102.
[9]
A. L. Friedman,; J. L. Tedesco,; P. M. Campbell,; J. C. Culbertson,; E. Aifer,; F. K. Perkins,; R. L. Myers-Ward,; J. K. Hite,; C. R. Eddy, Jr.; G. G. Jernigan, et al. Quantum linear magnetoresistance in multilayer epitaxial graphene. Nano Lett. 2010, 10, 3962-3965.
[10]
A. Narayanan,; M. D. Watson,; S. F. Blake,; N. Bruyant,; L. Drigo,; Y. L. Chen,; D. Prabhakaran,; B. Yan,; C. Felser,; T. Kong, et al. Linear magnetoresistance caused by mobility fluctuations in n-doped Cd3As2. Phys. Rev. Lett. 2015, 114, 117201.
[11]
M. Novak,; S. Sasaki,; K. Segawa,; Y. Ando, Large linear magnetoresistance in the dirac semimetal TlBiSSe. Phys. Rev. B 2015, 91, 041203.
[12]
M. N. Ali,; J. Xiong,; S. Flynn,; J. Tao,; Q. D. Gibson,; L. M. Schoop,; T. Liang,; N. Haldolaarachchige,; M. Hirschberger,; N. P. Ong, et al. Large, non-saturating magnetoresistance in WTe2. Nature 2014, 514, 205-208.
[13]
A. A. Abrikosov, Quantum magnetoresistance. Phys. Rev. B 1998, 58, 2788-2794.
[14]
A. A. Abrikosov, Quantum linear magnetoresistance. EPL Eur. Lett. 2000, 49, 789-793.
[15]
A. A. Abrikosov, Quantum magnetoresistance of layered semimetals. Phys. Rev. B 1999, 60, 4231-4234.
[16]
M. M. Parish,; P. B. Littlewood, Classical magnetotransport of inhomogeneous conductors. Phys. Rev. B 2005, 72, 094417.
[17]
M. von Kreutzbruck,; G. Lembke,; B. Mogwitz,; C. Korte,; J. Janek, Linear magnetoresistance in Ag2+δSe thin films. Phys. Rev. B 2009, 79, 035204.
[18]
N. V. Kozlova,; N. Mori,; O. Makarovsky,; L. Eaves,; Q. D. Zhuang,; A. Krier,; A. Patanè, Linear magnetoresistance due to multiple-electron scattering by low-mobility islands in an inhomogeneous conductor. Nat. Commun. 2012, 3, 1097.
[19]
B. Radisavljevic,; A. Radenovic,; J. Brivio,; V. Giacometti,; A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147-150.
[20]
X. D. Duan,; C. Wang,; A. L. Pan,; R. Q. Yu,; X. F. Duan, Two- dimensional transition metal dichalcogenides as atomically thin semiconductors: Opportunities and challenges. Chem. Soc. Rev. 2015, 44, 8859-8876.
[21]
A. D. Franklin, Nanomaterials in transistors: From high-performance to thin-film applications. Science 2015, 349, aab2750.
[22]
Y. Ye,; J. Xiao,; H. L. Wang,; Z. L. Ye,; H. Y. Zhu,; M. Zhao,; Y. Wang,; J. H. Zhao,; X. B. Yin,; X. Zhang, Electrical generation and control of the valley carriers in a monolayer transition metal dichalcogenide. Nat. Nanotechnol. 2016, 11, 598-602.
[23]
S. H. Liang,; H. W. Yang,; P. Renucci,; B. S. Tao,; P. Laczkowski,; S. Mc-Murtry,; G. Wang,; X. Marie,; J. M. George,; S. Petit-Watelot, et al. Electrical spin injection and detection in molybdenum disulfide multilayer channel. Nat. Commun. 2017, 8, 14947.
[24]
K. F. Mak,; K. L. McGill,; J. Park,; P. L. McEuen, The valley hall effect in MoS2 transistors. Science 2014, 344, 1489-1492.
[25]
K. F. Mak,; K. L. He,; J. Shan,; T. F. Heinz, Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 2012, 7, 494-498.
[26]
X. D. Xu,; W. Yao,; D. Xiao,; T. F. Heinz, Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 2014, 10, 343-350.
[27]
H. M. Guan,; N. Tang,; H. Huang,; X. Y. Zhang,; M. Su,; X. C. Liu,; L. Liao,; W. K. Ge,; B. Shen, Inversion symmetry breaking induced valley hall effect in multilayer WSe2. ACS Nano 2019, 13, 9325-9331.
[28]
H. L. Zeng,; J. F. Dai,; W. Yao,; D. Xiao,; X. D. Cui, Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 2012, 7, 490-493.
[29]
A. T. Neal,; H. Liu,; J. J. Gu,; P. D. Ye, Magneto-transport in MoS2: Phase coherence, spin-orbit scattering, and the hall factor. ACS Nano 2013, 7, 7077-7082.
[30]
W. J. Jie,; Z. B. Yang,; F. Zhang,; G. X. Bai,; C. W. Leung,; J. H. Hao, Observation of room-temperature magnetoresistance in monolayer MoS2 by ferromagnetic gating. ACS Nano 2017, 11, 6950-6958.
[31]
Y. Liu,; H. Wu,; H. C. Cheng,; S. Yang,; E. B. Zhu,; Q. Y. He,; M. N. Ding,; D. H. Li,; J. Guo,; N. O. Weiss, et al. Toward barrier free contact to molybdenum disulfide using graphene electrodes. Nano Lett. 2015, 15, 3030-3034.
[32]
X. Cui,; G. H. Lee,; Y. D. Kim,; G. Arefe,; P. Y. Huang,; C. H. Lee,; D. A. Chenet,; X. Zhang,; L. Wang,; F. Ye, et al. Multi-terminal transport measurements of MoS2 using a van der waals heterostructure device platform. Nat. Nanotechnol. 2015, 10, 534-540.
[33]
Y. Liu,; J. Guo,; E. B. Zhu,; L. Liao,; S. J. Lee,; M. N. Ding,; I. Shakir,; V. Gambin,; Y. Huang,; X. F. Duan, Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. Nature 2018, 557, 696-700.
[34]
H. Huang,; X. Q. Liu,; F. Liu,; C. S. Liu,; X. L. Liang,; Z. H. Zhang,; K. H. Liu,; X. Z. Zhao,; L. Liao, Comprehensive insights into effect of van der Waals contact on carbon nanotube network field-effect transistors. Appl. Phys. Lett. 2019, 115, 173503.
[35]
Y. Chai,; A. Hazeghi,; K. Takei,; H. Y. Chen,; P. C. H. Chan,; A. Javey,; H. S. P. Wong, Low-resistance electrical contact to carbon nanotubes with graphitic interfacial layer. IEEE Trans. Electron Dev. 2012, 59, 12-19.
[36]
A. C. Ferrari,; J. C. Meyer,; V. Scardaci,; C. Casiraghi,; M. Lazzeri,; F. Mauri,; S. Piscanec,; D. Jiang,; K. S. Novoselov,; S. Roth, et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.
[37]
Y. Liu,; J. Guo,; Y. C. Wu,; E. B. Zhu,; N. O. Weiss,; Q. Y. He,; H. Wu,; H. C. Cheng,; Y. Xu,; I. Shakir, et al. Pushing the performance limit of sub-100 nm molybdenum disulfide transistors. Nano Lett. 2016, 16, 6337-6342.
[38]
B. Radisavljevic,; A. Kis, Mobility engineering and a metal-insulator transition in monolayer MoS2. Nat. Mater. 2013, 12, 815-820.
[39]
J. L. Wang,; Q. Yao,; C. W. Huang,; X. M. Zou,; L. Liao,; S. S. Chen,; Z. Y. Fan,; K. Zhang,; W. Wu,; X. H. Xiao, et al. High mobility MoS2 transistor with low Schottky barrier contact by using atomic thick h-BN as a tunneling layer. Adv. Mater. 2016, 28, 8302-8308.
[40]
Z. M. Liao,; H. C. Wu,; S. Kumar,; G. S. Duesberg,; Y. B. Zhou,; G. L. W. Cross,; I. V. Shvets,; D. P. Yu, Large magnetoresistance in few layer graphene stacks with current perpendicular to plane geometry. Adv. Mater. 2012, 24, 1862-1866.
[41]
Y. B. Zhou,; B. H. Han,; Z. M. Liao,; H. C. Wu,; D. P. Yu, From positive to negative magnetoresistance in graphene with increasing disorder. Appl. Phys. Lett. 2011, 98, 222502.
Nano Research
Pages 1814-1818
Cite this article:
Huang H, Guan H, Su M, et al. Gate-tunable linear magnetoresistance in molybdenum disulfide field-effect transistors with graphene insertion layer. Nano Research, 2021, 14(6): 1814-1818. https://doi.org/10.1007/s12274-020-2922-6
Topics:
Part of a topical collection:

822

Views

5

Crossref

N/A

Web of Science

5

Scopus

1

CSCD

Altmetrics

Received: 10 February 2020
Revised: 25 March 2020
Accepted: 05 June 2020
Published: 03 July 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return