AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A non-nucleophilic gel polymer magnesium electrolyte compatible with sulfur cathode

Haiyan Fan1,2Yuxing Zhao3Jianhua Xiao3Jifang Zhang3Min Wang1,2Yuegang Zhang2,3( )
School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
Department of Physics, Tsinghua University, Beijing 100084, China
Show Author Information

Graphical Abstract

Abstract

Magnesium/sulfur battery (Mg/S) has recently received wide attention due to its high theoretical energy density (3,260 Wh/L) and low cost. To further improve its safety and flexibility, developing a polymer electrolyte that can be compatible with both electrophilic S and Mg is critical. Here, we report a magnesium chloride-(fluorinated tetraethylene glycolic)borate (MgCl-FTGB) based non-nucleophilic, gel-type polymer electrolyte for Mg/S battery via a facile synthetic method through commercially available reagents. This electrolyte coupled with glass fiber allows reversible Mg deposition/dissolution (100% coulombic efficiency) with low polarization (500 μA/cm2, 300/300 mV), and shows a wide electrochemical window of 4.8 V (vs. Mg/Mg2+). Mg/S battery assembled with this electrolyte can cycle over 50 times with a high specific discharge capacity retention of over 1,100 mAh/g.

Electronic Supplementary Material

Download File(s)
12274_2020_2923_MOESM1_ESM.pdf (1.6 MB)

References

[1]
Muldoon, J.; Bucur, C. B.; Gregory, T. Quest for nonaqueous multivalent secondary batteries: Magnesium and beyond. Chem. Rev. 2014, 114, 11683-11720.
[2]
Kim, H. S.; Arthur, T. S.; Allred, G. D.; Zajicek, J.; Newman, J. G.; Rodnyansky, A. E.; Oliver, A. G.; Boggess, W. C.; Muldoon, J. Structure and compatibility of a magnesium electrolyte with a sulphur cathode. Nat. Commun. 2011, 2, 427.
[3]
Zhao-Karger, Z.; Zhao, X. Y.; Fuhr, O.; Fichtner, M. Bisamide based non-nucleophilic electrolytes for rechargeable magnesium batteries. RSC Adv. 2013, 3, 16330-16335.
[4]
Zhao-Karger, Z.; Zhao, X. Y.; Wang, D.; Diemant, T.; Behm, R. J.; Fichtner, M. Performance improvement of magnesium sulfur batteries with modified non-nucleophilic electrolytes. Adv. Energy Mater. 2015, 5, 1401155.
[5]
Gao, T.; Noked, M.; Pearse, A. J.; Gillette, E.; Fan, X. L.; Zhu, Y.; Luo, C.; Suo, L. M.; Schroeder, M. A.; Xu, K. et al. Enhancing the reversibility of Mg/S battery chemistry through Li+ mediation. J. Am. Chem. Soc. 2015, 137, 12388-12393.
[6]
Liao, C.; Sa, N. Y.; Key, B.; Burrell, A. K.; Cheng, L.; Curtiss, L. A.; Vaughey, J. T.; Woo, J. J.; Hu, L. B.; Pan, B. F. et al. The unexpected discovery of the Mg(HMDS)2/MgCl2 complex as a magnesium electrolyte for rechargeable magnesium batteries. J. Mater. Chem. A 2015, 3, 6082-6087.
[7]
Xu, Y.; Li, W. F.; Zhou, G. M.; Pan, Z. H.; Zhang, Y. G. A non- nucleophilic mono-Mg2+ electrolyte for rechargeable mg/s battery. Energy Storage Mater. 2018, 14, 253-257.
[8]
Doe, R. E.; Han, R. B.; Hwang, J.; Gmitter, A. J.; Shterenberg, I.; Yoo, H. D.; Pour, N.; Aurbach, D. Novel, electrolyte solutions comprising fully inorganic salts with high anodic stability for rechargeable magnesium batteries. Chem. Commun. 2014, 50, 243-245.
[9]
He, S. J.; Luo, J.; Liu, T. L. MgCl2/AlCl3 electrolytes for reversible Mg deposition/stripping: Electrochemical conditioning or not? J. Mater. Chem. A 2017, 5, 12718-12722.
[10]
Luo, J.; He, S. J.; Liu, T. L. Tertiary Mg/MgCl2/AlCl3 inorganic Mg2+ electrolytes with unprecedented electrochemical performance for reversible mg deposition. ACS Energy Lett. 2017, 2, 1197-1202.
[11]
Li, W. F.; Cheng, S.; Wang, J.; Qiu, Y. C.; Zheng, Z. Z.; Lin, H. Z.; Nanda, S.; Ma, Q.; Xu, Y.; Ye, F. M. et al. Synthesis, crystal structure, and electrochemical properties of a simple magnesium electrolyte for magnesium/sulfur batteries. Angew. Chem. 2016, 128, 6516-6520.
[12]
Fan, H. Y.; Zheng, Z. Z.; Zhao, L. J.; Li, W. F.; Wang, J.; Dai, M. M.; Zhao, Y. X.; Xiao, J. H.; Wang, G.; Ding, X. Y. et al. Extending cycle life of Mg/S battery by activation of mg anode/electrolyte interface through an LiCl-assisted MgCl2 solubilization mechanism. Adv. Funct. Mater. 2020, 30, 1909370.
[13]
Xu, Y.; Zhou, G. M.; Zhao, S. Y.; Li, W. F.; Shi, F. F.; Li, J.; Feng, J.; Zhao, Y. X.; Wu, Y.; Guo, J. H. et al. Improving a Mg/S battery with YCl3 additive and magnesium polysulfide. Adv. Sci. 2020, 7, 1903603.
[14]
Zhang, Z. H.; Cui, Z. L.; Qiao, L. X.; Guan, J.; Xu, H. M.; Wang, X. G.; Hu, P.; Du, H. P.; Li, S. Z.; Zhou, X. H. et al. Novel design concepts of efficient Mg-ion electrolytes toward high-performance magnesium-selenium and magnesium-sulfur batteries. Adv. Energy Mater. 2017, 7, 1602055.
[15]
Xu, H. M.; Zhang, Z. H.; Cui, Z. L.; Du, A. B.; Lu, C. L.; Dong, S. M.; Ma, J.; Zhou, X. H.; Cui, G. L. Strong anion receptor-assisted boron-based mg electrolyte with wide electrochemical window and non-nucleophilic characteristic. Electrochem. Commun. 2017, 83, 72-76.
[16]
Xu, H. M.; Zhang, Z. H.; Li, J. J.; Qiao, L. X.; Lu, C. L.; Tang, K.; Dong, S. M.; Ma, J.; Liu, Y. J.; Zhou, X. H. et al. Multifunctional additives improve the electrolyte properties of magnesium borohydride toward magnesium-sulfur batteries. ACS Appl. Mater. Interfaces 2018, 10, 23757-23765.
[17]
Du, A. B.; Zhang, Z. H.; Qu, H. T.; Cui, Z. L.; Qiao, L. X.; Wang, L. L.; Chai, J. C.; Lu, T.; Dong, S. M.; Dong, T. T. et al. An efficient organic magnesium borate-based electrolyte with non-nucleophilic characteristics for magnesium-sulfur battery. Energy Environ. Sci. 2017, 10, 2616-2625.
[18]
Zhao-Karger, Z.; Liu, R. Y.; Dai, W. X.; Li, Z. Y.; Diemant, T.; Vinayan, B. P.; Bonatto Minella, C.; Yu, X. W.; Manthiram, A.; Behm, R. J. et al. Toward highly reversible magnesium-sulfur batteries with efficient and practical Mg[B(hfip)4]2 electrolyte. ACS Energy Lett. 2018, 3, 2005-2013.
[19]
Zhao-Karger, Z.; Gil Bardaji, M. E.; Fuhr, O.; Fichtner, M. A new class of non-corrosive, highly efficient electrolytes for rechargeable magnesium batteries. J. Mater. Chem. A 2017, 5, 10815-10820.
[20]
Ha, S. Y.; Lee, Y. W.; Woo, S. W.; Koo, B.; Kim, J. S.; Cho, J.; Lee, K. T.; Choi, N. S. Magnesium(II) bis(trifluoromethane sulfonyl) imide-based electrolytes with wide electrochemical windows for rechargeable magnesium batteries. ACS Appl. Mater. Interfaces 2014, 6, 4063-4073.
[21]
Sa, N. Y.; Pan, B. F.; Saha-Shah, A.; Hubaud, A. A.; Vaughey, J. T.; Baker, L. A.; Liao, C.; Burrell, A. K. Role of chloride for a simple, non-grignard mg electrolyte in ether-based solvents. ACS Appl. Mater. Interfaces 2016, 8, 16002-16008.
[22]
Gao, T.; Hou, S.; Wang, F.; Ma, Z. H.; Li, X. G.; Xu, K.; Wang, C. S. Reversible S0/MgSx redox chemistry in a MgTFSI2/MgCl2/DME electrolyte for rechargeable Mg/S batteries. Angew. Chem., Int. Ed. 2017, 56, 13526-13530.
[23]
Li, X. G.; Gao, T.; Han, F. D.; Ma, Z. H.; Fan, X. L.; Hou, S.; Eidson, N.; Li, W. S.; Wang, C. S. Reducing mg anode overpotential via ion conductive surface layer formation by iodine additive. Adv. Energy Mater. 2018, 8, 1701728.
[24]
Yang, Y. Y.; Qiu, Y. X.; NuLi, Y. N.; Wang, W. Q.; Yang, J.; Wang, J. L. A novel magnesium electrolyte containing a magnesium bis(diisopropyl)amide-magnesium chloride complex for rechargeable magnesium batteries. J. Mater. Chem. A 2019, 7, 18295-18303.
[25]
Yang, Y. Y.; Wang, W. Q.; Nuli, Y. N.; Yang, J.; Wang, J. L. High active magnesium trifluoromethanesulfonate-based electrolytes for magnesium-sulfur batteries. ACS Appl. Mater. Interfaces 2019, 11, 9062-9072.
[26]
Zhao, X. H.; Yang, Y. Y.; NuLi, Y. N.; Li, D. Y.; Wang, Y. R.; Xiang, X. L. A new class of electrolytes based on magnesium bis(diisopropyl)amide for magnesium-sulfur batteries. Chem. Commun. 2019, 55, 6086-6089.
[27]
Kumar, G. G.; Munichandraiah, N. A gel polymer electrolyte of magnesium triflate. Solid State Ion. 2000, 128, 203-210.
[28]
Kumar, G. G.; Munichandraiah, N. Solid-state rechargeable magnesium cell with poly(vinylidenefluoride)-magnesium triflate gel polymer electrolyte. J. Power Sources 2001, 102, 46-54.
[29]
Chusid, O.; Gofer, Y.; Gizbar, H.; Vestfrid, Y.; Levi, E.; Aurbach, D.; Riech, I. Solid-state rechargeable magnesium batteries. Adv. Mater. 2003, 15, 627-630.
[30]
Pandey, G. P.; Agrawal, R. C.; Hashmi, S. A. Performance studies on composite gel polymer electrolytes for rechargeable magnesium battery application. J. Phys. Chem. Solids 2011, 72, 1408-1413.
[31]
Shao, Y. Y.; Rajput, N. N.; Hu, J. Z.; Hu, M.; Liu, T. B.; Wei, Z. H.; Gu, M.; Deng, X. C.; Xu, S. C.; Han, K. S. et al. Nanocomposite polymer electrolyte for rechargeable magnesium batteries. Nano Energy 2015, 12, 750-759.
[32]
Thelen, J. L.; Inceoglu, S.; Venkatesan, N. R.; Mackay, N. G.; Balsara, N. P. Relationship between ion dissociation, melt morphology, and electrochemical performance of lithium and magnesium single-ion conducting block copolymers. Macromolecules 2016, 49, 9139-9147.
[33]
Du, A. B.; Zhang, H. R.; Zhang, Z. H.; Zhao, J. W.; Cui, Z. L.; Zhao, Y. M.; Dong, S. M.; Wang, L. L.; Zhou, X. H.; Cui, G. L. A crosslinked polytetrahydrofuran-borate-based polymer electrolyte enabling wide- working-temperature-range rechargeable magnesium batteries. Adv. Mater. 2019, 31, 1805930.
[34]
Merrill, L. C.; Ford, H. O.; Schaefer, J. L. Application of single-ion conducting gel polymer electrolytes in magnesium batteries. ACS Appl. Energy Mater. 2019, 2, 6355-6363.
[35]
Ford, H. O.; Merrill, L. C.; He, P.; Upadhyay, S. P.; Schaefer, J. L. Cross-linked ionomer gel separators for polysulfide shuttle mitigation in magnesium-sulfur batteries: Elucidation of structure-property relationships. Macromolecules 2018, 51, 8629-8636.
[36]
Luo, J.; Bi, Y. J.; Zhang, L. P.; Zhang, X. Y.; Liu, T. L. A stable, non-corrosive perfluorinated pinacolatoborate Mg electrolyte for rechargeable Mg batteries. Angew. Chem., Int. Ed. 2019, 58, 6967-6971.
[37]
Li, Z. Y.; Fuhr, O.; Fichtner, M.; Zhao-Karger, Z. Towards stable and efficient electrolytes for room-temperature rechargeable calcium batteries. Energy Environ. Sci. 2019, 12, 3496-3501.
[38]
Tsujioka, S.; Nolan, B. G.; Takase, H.; Fauber, B. P.; Strauss, S. H. Conductivities and electrochemical stabilities of lithium salts of polyfluoroalkoxyaluminate superweak anions. J. Electrochem. Soc. 2004, 151, A1418-A1423.
[39]
Lopez, J.; Pei, A.; Oh, J. Y.; Wang, G. J. N.; Cui, Y.; Bao, Z. N. Effects of polymer coatings on electrodeposited lithium metal. J. Am. Chem. Soc. 2018, 140, 11735-11744.
[40]
Yu, Z. A.; Mackanic, D. G.; Michaels, W.; Lee, M.; Pei, A.; Feng, D. W.; Zhang, Q. H.; Tsao, Y.; Amanchukwu, C. V.; Yan, X. Z. et al. A dynamic, electrolyte-blocking, and single-ion-conductive network for stable lithium-metal anodes. Joule 2019, 3, 2761-2776.
[41]
Zhou, Y. Q.; Yoshida, K.; Yamaguchi, T.; Liu, H. Y.; Fang, C. H.; Fang, Y. Microhydration of BH4-: Dihydrogen bonds, structure, stability, and Raman spectra. J. Phys. Chem. A 2017, 121, 9146-9155.
[42]
Pour, N.; Gofer, Y.; Major, D. T.; Aurbach, D. Structural analysis of electrolyte solutions for rechargeable Mg batteries by stereoscopic means and DFT calculations. J. Am. Chem. Soc. 2011, 133, 6270-6278.
[43]
Kang, S. J.; Lim, S. C.; Kim, H.; Heo, J. W.; Hwang, S.; Jang, M.; Yang, D.; Hong, S. T.; Lee, H. Non-grignard and lewis acid-free sulfone electrolytes for rechargeable magnesium batteries. Chem. Mater. 2017, 29, 3174-3180.
[44]
Rojas, A. A.; Thakker, K.; McEntush, K. D.; Inceoglu, S.; Stone, G. M.; Balsara, N. P. Dependence of morphology, shear modulus, and conductivity on the composition of lithiated and magnesiated single-ion-conducting block copolymer electrolytes. Macromolecules 2017, 50, 8765-8776.
[45]
Xu, Y.; Ye, Y. F.; Zhao, S. Y.; Feng, J.; Li, J.; Chen, H.; Yang, A. K.; Shi, F. F.; Jia, L. J.; Wu, Y. et al. In situ X-ray absorption spectroscopic investigation of the capacity degradation mechanism in Mg/S batteries. Nano Lett. 2019, 19, 2928-2934.
[46]
Zeng, L. Q.; Wang, N.; Yang, J.; Wang, J. L.; Nuli, Y. N. Application of a sulfur cathode in nucleophilic electrolytes for magnesium/sulfur batteries. J. Electrochem. Soc. 2017, 164, A2504-A2512.
[47]
Zhou, X. J.; Tian, J.; Hu, J. L.; Li, C. L. High rate magnesium-sulfur battery with improved cyclability based on metal-organic framework derivative carbon host. Adv. Mater. 2018, 30, 1704166.
[48]
Wang, J.; Cheng, S.; Li, W. F.; Jia, L. J.; Xiao, Q. B.; Hou, Y.; Zheng, Z. Z.; Li, H. F.; Zhang, S.; Zhou, L. S. et al. Robust electrical “highway” network for high mass loading sulfur cathode. Nano Energy 2017, 40, 390-398.
Nano Research
Pages 2749-2754
Cite this article:
Fan H, Zhao Y, Xiao J, et al. A non-nucleophilic gel polymer magnesium electrolyte compatible with sulfur cathode. Nano Research, 2020, 13(10): 2749-2754. https://doi.org/10.1007/s12274-020-2923-5
Topics:

714

Views

24

Crossref

N/A

Web of Science

22

Scopus

2

CSCD

Altmetrics

Received: 21 March 2020
Revised: 01 June 2020
Accepted: 05 June 2020
Published: 05 October 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return