AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Advances of biological-camouflaged nanoparticles delivery system

Yanlin ChenKui Cheng( )
Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
Show Author Information

Graphical Abstract

Abstract

Nanoparticles (NPs) which are innovation and research focus in drug delivery systems, still have some disadvantages limiting its application in clinical use, such as short circulation time, recognition and clearance by reticuloendothelial system (RES) and passive targeting in certain organs. However, the recent combination of natural components and nanotechnology has offered new solutions to address these problems. A novel biomimetic platform consisting of nanoparticle core and membrane shell, such as cell membrane, exosome or vesicle vastly improves properties of nanoparticles. These coated nanoparticles can replicate the unique functions of the membrane, such as prolonged blood circulation, active targeting capability and enhanced internalization. In this review, we focus on the newest development of biological-camouflaged nanoparticles and mainly introduce its application related to cancer therapy and toll-like receptor.

References

[1]
Roh, Y. G.; Shin, S. W.; Kim, S. Y.; Kim, S.; Lim, Y. T.; Oh, B. K.; Um, S. H. Protein nanoparticle fabrication for optimized reticuloendothelial system evasion and tumor accumulation. Langmuir 2019, 35, 3992-3998.
[2]
Gao, W. W.; Zhang, L. F. Coating nanoparticles with cell membranes for targeted drug delivery. J. Drug Target 2015, 23, 619-626.
[3]
Luk, B. T.; Zhang, L. F. Cell membrane-camouflaged nanoparticles for drug delivery. J. Control Release 2015, 220, 600-607.
[4]
Durfee, P. N.; Lin, Y. S.; Dunphy, D. R.; Muñiz, A. J.; Butler, K. S.; Humphrey, K. R.; Lokke, A. J.; Agola, J. O.; Chou, S. S.; Chen, I. M. et al. Mesoporous silica nanoparticle-supported lipid bilayers (protocells) for active targeting and delivery to individual leukemia cells. ACS Nano 2016, 10, 8325-8345.
[5]
Siegel, R. L.; Miller, K. D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7-34.
[6]
Curry, S. J.; Krist, A. H.; Owens, D. K. Annual report to the nation on the status of cancer, part II: Recent changes in prostate cancer trends and disease characteristics. Cancer 2019, 125, 317-318.
[7]
Ward, E. M.; Sherman, R. L.; Henley, S. J.; Jemal, A.; Siegel, D. A.; Feuer, E. J.; Firth, A. U.; Kohler, B. A.; Scott, S.; Ma, J. et al. Annual report to the nation on the status of cancer, featuring cancer in men and women age 20-49 years. J. Natl. Cancer Inst. 2019, 111, 1279-1297.
[8]
Fang, R. H.; Jiang, Y.; Fang, J. C.; Zhang, L. F. Cell membrane- derived nanomaterials for biomedical applications. Biomaterials 2017, 128, 69-83.
[9]
Kothandan, V. K.; Kothandan, S.; Kim, D. H.; Byun, Y.; Lee, Y. K.; Park, I. K.; Hwang, S. R. Crosstalk between stress granules, exosomes, tumour antigens, and immune cells: Significance for cancer immunity. Vaccines 2020, 8, 172.
[10]
Mashouri, L.; Yousefi, H.; Aref, A. R.; Ahadi, A. M.; Molaei, F.; Alahari, S. K. Exosomes: Composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol. Cancer 2019, 18, 75.
[11]
Malhotra, S.; Dumoga, S.; Sirohi, P.; Singh, N. Red blood cells- derived vesicles for delivery of lipophilic drug camptothecin. ACS Appl. Mater. Interfaces 2019, 11, 22141-22151.
[12]
Hu, C. M.; Fang, R. H.; Luk, B. T.; Chen, K. N. H.; Carpenter, C.; Gao, W. W.; Zhang, K.; Zhang, L. F. “Marker-of-self” functionalization of nanoscale particles through a top-down cellular membrane coating approach. Nanoscale 2013, 5, 2664-2668.
[13]
Guo, Y. Y.; Wang, D.; Song, Q. L.; Wu, T. T.; Zhuang, X. T.; Bao, Y. L.; Kong, M.; Qi, Y.; Tan, S. W.; Zhang, Z. P. Erythrocyte membrane- enveloped polymeric nanoparticles as nanovaccine for induction of antitumor immunity against melanoma. ACS Nano 2015, 9, 6918-6933.
[14]
Luk, B. T.; Fang, R. H.; Hu, C. M.; Copp, J. A.; Thamphiwatana, S.; Dehaini, D.; Gao, W. W.; Zhang, K.; Li, S. L.; Zhang, L. F. Safe and immunocompatible nanocarriers cloaked in RBC membranes for drug delivery to treat solid tumors. Theranostics 2016, 6, 1004-1011.
[15]
Sun, T. T.; Dou, J. H.; Liu, S.; Wang, X.; Zheng, X. H.; Wang, Y. P.; Pei, J.; Xie, Z. G. Second near-infrared conjugated polymer nanoparticles for photoacoustic imaging and photothermal therapy. ACS Appl. Mater. Interfaces 2018, 10, 7919-7926.
[16]
Rao, L.; Meng, Q. F.; Bu, L. L.; Cai, B.; Huang, Q. Q.; Sun, Z. J.; Zhang, W. F.; Li, A.; Guo, S. S.; Liu, W. et al. Erythrocyte membrane- coated upconversion nanoparticles with minimal protein adsorption for enhanced tumor imaging. ACS Appl. Mater. Interfaces 2017, 9, 2159-2168.
[17]
Han, X.; Wang, C.; Liu, Z. Red blood cells as smart delivery systems. Bioconjugate Chem. 2018, 29, 852-860.
[18]
Pang, L.; Qin, J.; Han, L. M.; Zhao, W. J.; Liang, J. M.; Xie, Z. Y.; Yang, P.; Wang, J. X. Exploiting macrophages as targeted carrier to guide nanoparticles into glioma. Oncotarget 2016, 7, 37081-37091.
[19]
Tu, Y. J.; Wu, Z. H.; Tan, B.; Yang, A. D.; Fang, Z. Q. Emodin: Its role in prostate cancer-associated inflammation (Review). Oncol. Rep. 2019, 42, 1259-1271.
[20]
Parodi, A.; Quattrocchi, N.; Van De Ven, A. L.; Chiappini, C.; Evangelopoulos, M.; Martinez, J. O.; Brown, B. S.; Khaled, S. Z.; Yazdi, I. K.; Enzo, M. V. et al. Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat. Nanotechnol 2013, 8, 61-68.
[21]
Xuan, M. J.; Shao, J. X.; Dai, L. R.; Li, J. B.; He, Q. Macrophage cell membrane camouflaged au nanoshells for in vivo prolonged circulation life and enhanced cancer photothermal therapy. ACS Appl. Mater. Interfaces 2016, 8, 9610-9618.
[22]
Rao, L.; He, Z. B.; Meng, Q. F.; Zhou, Z. Y.; Bu, L. L.; Guo, S. S.; Liu, W.; Zhao, X. Z. Effective cancer targeting and imaging using macrophage membrane-camouflaged upconversion nanoparticles. J. Biomed. Mater. Res. A 2017, 105, 521-530.
[23]
Cao, H. Q.; Dan, Z. L.; He, X. Y.; Zhang, Z. W.; Yu, H. J.; Yin, Q.; Li, Y. P. Liposomes coated with isolated macrophage membrane can target lung metastasis of breast cancer. ACS Nano 2016, 10, 7738-7748.
[24]
Kang, T.; Zhu, Q. Q.; Wei, D.; Feng, J. X.; Yao, J. H.; Jiang, T. Z.; Song, Q. X.; Wei, X. B.; Chen, H. Z.; Gao, X. L. et al. Nanoparticles coated with neutrophil membranes can effectively treat cancer metastasis. ACS Nano 2017, 11, 1397-1411.
[25]
Bower, J. E.; Lamkin, D. M. Inflammation and cancer-related fatigue: Mechanisms, contributing factors, and treatment implications. Brain Behav. Immun. 2013, 30, S48-S57.
[26]
Grivennikov, S. I.; Greten, F. R.; Karin, M. Immunity, inflammation, and cancer. Cell 2010, 140, 883-899.
[27]
Yang, M.; McKay, D.; Pollard, J. W.; Lewis, C. E. Diverse functions of macrophages in different tumor microenvironments. Cancer Res. 2018, 78, 5492-5503.
[28]
Han, Y. T.; Pan, H.; Li, W. J.; Chen, Z.; Ma, A. Q.; Yin, T.; Liang, R. J.; Chen, F. M.; Ma, Y. F.; Jin, Y. et al. T cell membrane mimicking nanoparticles with bioorthogonal targeting and immune recognition for enhanced photothermal therapy. Adv. Sci. 2019, 6, 1900251.
[29]
Zhu, J. Y.; Zheng, D. W.; Zhang, M. K.; Yu, W. Y.; Qiu, W. X.; Hu, J. J.; Feng, J.; Zhang, X. Z. Preferential cancer cell self-recognition and tumor self-targeting by coating nanoparticles with homotypic cancer cell membranes. Nano Lett. 2016, 16, 5895-5901.
[30]
Chen, Z.; Zhao, P. F.; Luo, Z. Y.; Zheng, M. B.; Tian, H.; Gong, P.; Gao, G. H.; Pan, H.; Liu, L. L.; Ma, A. Q. et al. Cancer cell membrane- biomimetic nanoparticles for homologous-targeting dual-modal imaging and photothermal therapy. ACS Nano 2016, 10, 10049-10057.
[31]
Cheng, K.; Gao, M.; Godfroy, J. I.; Brown, P. N.; Kastelowitz, N.; Yin, H. Specific activation of the TLR1-TLR2 heterodimer by small- molecule agonists. Sci. Adv. 2015, 1, e1400139.
[32]
Chen, Z. P.; Cen, X. H.; Yang, J. J.; Tang, X. S.; Cui, K.; Cheng, K. Structure-based discovery of a specific TLR1-TLR2 small molecule agonist from the ZINC drug library database. Chem. Commun. 2018, 54, 11411-11414.
[33]
Cen, X. H.; Zhu, G. Z.; Yang, J. J.; Yang, J. J.; Guo, J. Y.; Jin, J. B.; Nandakumar, K. S.; Yang, W.; Yin, H.; Liu, S. W.; Cheng, K. TLR1/2 specific small-molecule agonist suppresses leukemia cancer cell growth by stimulating cytotoxic T lymphocytes. Adv. Sci. 2019, 6, 1802042.
[34]
Fang, R. H.; Hu, C. M.; Luk, B. T.; Gao, W. W.; Copp, J. A.; Tai, Y. Y.; O’Connor, D. E.; Zhang, L. F. Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano Lett. 2014, 14, 2181-2188.
[35]
Yang, R.; Xu, J.; Xu, L. G.; Sun, X. Q.; Chen, Q.; Zhao, Y. H.; Peng, R.; Liu, Z. Cancer cell membrane-coated adjuvant nanoparticles with mannose modification for effective anticancer vaccination. ACS Nano 2018, 12, 5121-5129.
[36]
Han, Z.; Liu, S.; Lin, H. S.; Trivett, A. L.; Hannifin, S.; Yang, D; Oppenheim, J. J. Inhibition of murine hepatoma tumor growth by cryptotanshinone involves TLR7-dependent activation of macrophages and induction of adaptive antitumor immune defenses. Cancer Immunol. Immunother. 2019, 68, 1073-1085.
[37]
Ye, Y. Q.; Wang, C.; Zhang, X. D.; Hu, Q. Y.; Zhang, Y. Q.; Liu, Q.; Wen, D.; Milligan, J.; Bellotti, A.; Huang, L. et al. A melanin-mediated cancer immunotherapy patch. Sci. Immunol. 2017, 2, eaan5692.
[38]
Kroll, A. V.; Fang, R. H.; Jiang, Y.; Zhou, J. R.; Wei, X. L.; Yu, C. L.; Gao, J.; Luk, B. T.; Dehaini, D.; Gao, W. W.; Zhang, L. F. Nanoparticulate delivery of cancer cell membrane elicits multiantigenic antitumor immunity. Adv. Mater. 2017, 29, 1703969.
[39]
Jin, K. T.; Lan, H. R.; Chen, X. Y.; Wang, S. B.; Ying, X. J.; Lin, Y.; Mou, X. Z. Recent advances in carbohydrate-based cancer vaccines. Biotechnol. Lett. 2019, 41, 641-650.
[40]
Marrocco, I.; Romaniello, D.; Yarden, Y. Cancer immunotherapy: The dawn of antibody cocktails. In Human Monoclonal Antibodiesi. Steinitz, M., Ed.; Humana Press: New York, 2019; pp 11-51.
[41]
Frydrychowicz, M.; Kolecka-Bednarczyk, A.; Madejczyk, M.; Yasar, S.; Dworacki, G. Exosomes-structure, biogenesis and biological role in non-small-cell lung cancer. Scand. J. Immunol. 2015, 81, 2-10.
[42]
Jones, L. B.; Bell, C. R.; Bibb, K. E.; Gu, L. L.; Coats, M. T.; Matthews, Q. L. Pathogens and their effect on exosome biogenesis and composition. Biomedicines 2018, 6, 79.
[43]
Vader, P.; Mol, E. A.; Pasterkamp, G.; Schiffelers, R. M. Extracellular vesicles for drug delivery. Adv. Drug Deliv. Rev. 2016, 106, 148-156.
[44]
Batrakova, E. V.; Kim, M. S. Using exosomes, naturally-equipped nanocarriers, for drug delivery. J. Control Release 2015, 219, 396-405.
[45]
Yuan, D. F.; Zhao, Y. L.; Banks, W. A.; Bullock, K. M.; Haney, M.; Batrakova, E.; Kabanov, A. V. Macrophage exosomes as natural nanocarriers for protein delivery to inflamed brain. Biomaterials 2017, 142, 1-12.
[46]
Sato, Y. T.; Umezaki, K.; Sawada, S.; Mukai, S. A.; Sasaki, Y.; Harada, N.; Shiku, H.; Akiyoshi, K. Engineering hybrid exosomes by membrane fusion with liposomes. Sci. Rep. 2016, 6, 21933.
[47]
Yong, T. Y.; Zhang, X. Q.; Bie, N. N.; Zhang, H. B.; Zhang, X. T.; Li, F. Y.; Hakeem, A.; Hu, J.; Gan, L.; Santos, H. A. et al. Tumor exosome- based nanoparticles are efficient drug carriers for chemotherapy. Nat. Commun. 2019, 10, 3838.
[48]
Turdo, A.; Veschi, V.; Gaggianesi, M.; Chinnici, A.; Bianca, P.; Todaro, M.; Stassi, G. Meeting the challenge of targeting cancer stem cells. Front. Cell Dev. Biol. 2019, 7, 16.
[49]
Aghaalikhani, N.; Rashtchizadeh, N.; Shadpour, P.; Allameh, A.; Mahmoodi, M. Cancer stem cells as a therapeutic target in bladder cancer. J. Cell Physiol. 2019, 234, 3197-3206.
[50]
Su, J. H.; Sun, H. P.; Meng, Q. S.; Yin, Q.; Zhang, P. C.; Zhang, Z. W.; Yu, H. J.; Li, Y. P. Bioinspired nanoparticles with NIR-controlled drug release for synergetic chemophotothermal therapy of metastatic breast cancer. Adv. Funct. Mater. 2016, 26, 7495-7506.
[51]
Rao, L.; Cai, B.; Bu, L. L.; Liao, Q. Q.; Guo, S. S.; Zhao, X. Z.; Dong, W. F.; Liu, W. Microfluidic electroporation-facilitated synthesis of erythrocyte membrane-coated magnetic nanoparticles for enhanced imaging-guided cancer therapy. ACS Nano 2017, 11, 3496-3505.
[52]
Rao, L.; Bu, L. L.; Cai, B.; Xu, J. H.; Li, A.; Zhang, W. F.; Sun, Z. J.; Guo, S. S.; Liu, W.; Wang, T. H. et al. Cancer cell membrane-coated upconversion nanoprobes for highly specific tumor imaging. Adv. Mater. 2016, 28, 3460-3466.
[53]
Hu, Q. Y.; Sun, W. J.; Qian, C. E.; Wang, C.; Bomba, H. N.; Gu, Z. Anticancer platelet-mimicking nanovehicles. Adv. Mater. 2015, 27, 7043-7050.
[54]
Rao, L.; Bu, L. L.; Meng, Q. F.; Cai, B.; Deng, W. W.; Li, A.; Li, K. Y.; Guo, S. S.; Zhang, W. F.; Liu, W. et al. Antitumor platelet-mimicking magnetic nanoparticles. Adv. Funct. Mater. 2017, 27, 1604774.
[55]
Rao, L.; Bu, L. L.; Ma, L.; Wang, W. B.; Liu, H. Q.; Wan, D.; Liu, J. F.; Li, A.; Guo, S. S.; Zhang, L. et al. Platelet-facilitated photothermal therapy of head and neck squamous cell carcinoma. Angew. Chem., Int. Ed. 2018, 57, 986-991.
[56]
Gao, W. W.; Fang, R. H.; Thamphiwatana, S.; Luk, B. T.; Li, J. M.; Angsantikul, P.; Zhang, Q. Z.; Hu, C. M. J.; Zhang, L. F. Modulating antibacterial immunity via bacterial membrane-coated nanoparticles. Nano Lett. 2015, 15, 1403-1409.
[57]
Gao, C. Y.; Lin, Z. H.; Jurado-Sánchez, B.; Lin, X. K.; Wu, Z. G.; He, Q. Stem cell membrane-coated nanogels for highly efficient in vivo tumor targeted drug delivery. Small 2016, 12, 4056-4062.
[58]
Jiang, Q.; Liu, Y.; Guo, R. R.; Yao, X. X.; Sung, S.; Pang, Z. Q.; Yang, W. L. Erythrocyte-cancer hybrid membrane-camouflaged melanin nanoparticles for enhancing photothermal therapy efficacy in tumors. Biomaterials 2019, 192, 292-308.
[59]
Deng, G. J.; Sun, Z. H.; Li, S. P.; Peng, X. H.; Li, W. J.; Zhou, L. H.; Ma, Y. F.; Gong, P.; Cai, L. T. Cell-membrane immunotherapy based on natural killer cell membrane coated nanoparticles for the effective inhibition of primary and abscopal tumor growth. ACS Nano 2018, 12, 12096-12108.
[60]
Sun, H. P.; Su, J. H.; Meng, Q. S.; Yin, Q.; Chen, L. L.; Gu, W. W.; Zhang, P. C.; Zhang, Z. W.; Yu, H. J.; Wang, S. L. et al. Cancer- cell-biomimetic nanoparticles for targeted therapy of homotypic tumors. Adv. Mater. 2016, 28, 9581-9588.
[61]
Wang, D. D.; Dong, H. F.; Li, M.; Cao, Y.; Yang, F.; Zhang, K.; Dai, W. H.; Wang, C. T.; Zhang, X. Erythrocyte-cancer hybrid membrane camouflaged hollow copper sulfide nanoparticles for prolonged circulation life and homotypic-targeting photothermal/chemotherapy of melanoma. ACS Nano 2018, 12, 5241-5252.
[62]
Rao, L.; Meng, Q. F.; Huang, Q. Q.; Wang, Z. X.; Yu, G. T.; Li, A.; Ma, W. J.; Zhang, N. G.; Guo, S. S.; Zhao, X. Z. et al. Platelet- leukocyte hybrid membrane-coated immunomagnetic beads for highly efficient and highly specific isolation of circulating tumor cells. Adv. Funct. Mater. 2018, 28, 1803531.
[63]
Fang, R. H.; Kroll, A. V.; Gao, W. W.; Zhang, L. F. Cell membrane coating nanotechnology. Adv. Mater. 2018, 30, 1706759.
[64]
Kroll, A. V.; Fang, R. H.; Zhang, L. F. Biointerfacing and applications of cell membrane-coated nanoparticles. Bioconjugate Chem. 2017, 28, 23-32.
[65]
Zhang, P. F.; Liu, G.; Chen, X. Y. Nanobiotechnology: Cell membrane-based delivery systems. Nano Today 2017, 13, 7-9.
[66]
Dehaini, D.; Wei, X. L.; Fang, R. H.; Masson, S.; Angsantikul, P.; Luk, B. T.; Zhang, Y.; Ying, M.; Jiang, Y.; Kroll, A. V. et al. Erythrocyte- platelet hybrid membrane coating for enhanced nanoparticle functionalization. Adv. Mater. 2017, 29, 1606209.
[67]
Han, X.; Shen, S. F.; Fan, Q.; Chen, G. J.; Archibong, E.; Dotti, G.; Liu, Z.; Gu, Z.; Wang, C. Red blood cell-derived nanoerythrosome for antigen delivery with enhanced cancer immunotherapy. Sci. Adv. 2019, 5, eaaw6870.
[68]
Lynn, G. M.; Chytil, P.; Francica, J. R.; Lagová, A.; Kueberuwa, G.; Ishizuka, A. S.; Zaidi, N.; Ramirez-Valdez, R. A.; Blobel, N. J.; Baharom, F. et al. Impact of polymer-TLR-7/8 agonist (adjuvant) morphology on the potency and mechanism of CD8 T cell induction. Biomacromolecules 2019, 20, 854-870.
[69]
Lu, F. J.; Mosley, Y. Y. C.; Carmichael, B.; Brown, D. D.; HogenEsch, H. Formulation of aluminum hydroxide adjuvant with TLR agonists poly(I:C) and CpG enhances the magnitude and avidity of the humoral immune response. Vaccine 2019, 37, 1945-1953.
[70]
Guan, X. M. Cancer metastases: Challenges and opportunities. Acta Pharm. Sin. B 2015, 5, 402-418.
Nano Research
Pages 2617-2624
Cite this article:
Chen Y, Cheng K. Advances of biological-camouflaged nanoparticles delivery system. Nano Research, 2020, 13(10): 2617-2624. https://doi.org/10.1007/s12274-020-2931-5
Topics:

740

Views

19

Crossref

N/A

Web of Science

20

Scopus

2

CSCD

Altmetrics

Received: 04 May 2020
Revised: 09 June 2020
Accepted: 12 June 2020
Published: 06 July 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return