AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Construction of self-sensitized LiErF4: 0.5% Tm3+@LiYF4 upconversion nanoprobe for trace water sensing

Ling Zhang1Xiaodan Li2Wang Wang3Xu Zhao1Xu Yan1Chenguang Wang1Haoqiang Bao1Yang Lu1Xianggui Kong3Fengmin Liu1Xiaomin Liu1( )Geyu Lu1( )
State Key Laboratory of Integrated Optoelectronics, Jilin Key Laboratory of Advanced Gas Sensors, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
Department of Respiratory Medicine, The First Hospital, Jilin University, Changchun 130021, China
State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Science, Changchun 130033, China
Show Author Information

Graphical Abstract

Abstract

LiErF4 was commonly used as a dipolar-coupled antiferromagnet, and was rarely considered as a luminescent material. Herein, we achieved the strong red upconversion emission of LiErF4 simply by an inert shell coating, i.e., LiErF4@LiYF4. Owing to the unique and intrinsic ladder-like energy levels of Er3+ ions, this LiErF4 core-shell nanostructures present red emission (~ 650 nm) under multi-band excitation in the near-infrared (NIR) region (~ 808, ~ 980, and ~ 1,530 nm). A brighter and monochromic red emission can be further obtained via doping 0.5% Tm3+ into the LiErF4 core, i.e., LiErF4: 0.5% Tm3+@LiYF4. The enriched Er3+ ions and strong monochromic red emission natures make LiErF4: 0.5% Tm3+@LiYF4 nanocrystals very sensitive for trace water probing in organic solvents with detection limit of 30 ppm in acetonitrile, 50 ppm in dimethyl sulfoxide (DMSO), and 58 ppm in N, N-dimethyl- formamide (DMF) under excitation of 808 nm. Due to their superior chemical and physical stability, these nanoprobes exhibit excellent antijamming ability and recyclability, offering them suitable for real-time and long-term water monitoring.

Electronic Supplementary Material

Download File(s)
12274_2020_2932_MOESM1_ESM.pdf (1.9 MB)

References

[1]
Wang, L. Y.; Li, Y. D. Luminescent coordination compound nanospheres for water determination. Small 2007, 3, 1218-1221.
[2]
Nussbaum, R.; Lischke, D.; Paxmann, H.; Wolf, B. Quantitative GC determination of water in small samples. Chromatographia 2000, 51, 119-121.
[3]
Lee, W.; Jin, Y. J.; Park, L. S.; Kwak, G. Fluorescent actuator based on microporous conjugated polymer with intramolecular stack structure. Adv. Mater. 2012, 24, 5604-5609.
[4]
Dantan, N.; Frenzel, W.; Kuppers, S. Determination of water traces in various organic solvents using Karl Fischer method under FIA conditions. Talanta 2000, 52, 101-109.
[5]
Men, G. W.; Zhang, G. R.; Liang, C. S.; Liu, H. L.; Yang, B.; Pan, Y. Y.; Wang, Z. Y.; Jiang, S. M. A dual channel optical detector for trace water chemodosimetry and imaging of live cells. Analyst 2013, 138, 2847-2857.
[6]
Yang, X.; Niu, C. G.; Shang, Z. J.; Shen, G. L.; Yu, R. Q. Optical- fiber sensor for determining water content in organic solvents. Sens. Actuators B Chem. 2001, 75, 43-47.
[7]
Citterio, D.; Minamihashi, K.; Kuniyoshi, Y.; Hisamoto, H.; Sasaki, S. I.; Suzuki, K. Optical determination of low-level water concentrations in organic solvents using fluorescent acridinyl dyes and dye-immobilized polymer membranes. Anal. Chem. 2001, 73, 5339-5345.
[8]
Ding, L.; Zhang, Z. Y.; Li, X.; Su, J. H. Highly sensitive determination of low-level water content in organic solvents using novel solvatochromic dyes based on thioxanthone. Chem. Commun. 2013, 49, 7319-7321.
[9]
Jung, H. S.; Verwilst, P.; Kim, W. Y.; Kim, J. S. Fluorescent and colorimetric sensors for the detection of humidity or water content. Chem. Soc. Rev. 2016, 45, 1242-1256.
[10]
Yao, M. Z.; Chen, W. Hypersensitive luminescence of Eu3+ in dimethyl sulfoxide as a new probing for water measurement. Anal. Chem. 2011, 83, 1879-1882.
[11]
Deng, Q. L.; Li, Y. L.; Wu, J. H.; Liu, Y.; Fang, G. Z.; Wang, S.; Zhang, Y. K. Highly sensitive fluorescent sensing for water based on poly (m-aminobenzoic acid). Chem. Commun. 2012, 48, 3009-3011.
[12]
Guo, S. H.; Xie, X. J.; Huang, L.; Huang, W. Sensitive water probing through nonlinear photon Upconversion of lanthanide-doped nanoparticles. ACS Appl. Mater. Interfaces 2016, 8, 847-853.
[13]
Chen, D. Q.; Xu, M.; Huang, P.; Ma, M. F.; Ding, M. Y.; Lei, L. Water detection through Nd3+-sensitized photon upconversion in core-shell nanoarchitecture. J. Mater. Chem. C 2017, 5, 5434-5443.
[14]
Wang, W.; Zhao, M. Y.; Wang, L; Chen, H. Q. Core-shell upconversion nanoparticles of type NaGdF4: Yb, Er@NaGdF4: Nd, Yb and sensitized with a NIR dye are a viable probe for luminescence determination of the fraction of water in organic solvents. Microchim. Acta 2019, 186, 630.
[15]
Xu, J. T.; Gulzar, A.; Yang, P. P.; Bi, H. T.; Yang, D.; Gai, S. L.; He, F.; Lin, J.; Xing, B. G.; Jin, D. Y. Recent advances in near-infrared emitting lanthanide-doped nanoconstructs: Mechanism, design and application for Bioimaging. Coord. Chem. Rev. 2019, 381, 104-134.
[16]
Wen, S. H.; Zhou, J. J.; Zheng, K. Z.; Bednarkiewicz, A.; Liu, X. G.; Jin, D. Y. Advances in highly doped upconversion nanoparticles. Nat. Commun. 2018, 9, 2415.
[17]
Dong, H.; Du, S. R.; Zheng, X. Y.; Lyu, G. M.; Sun, L. D.; Li, L. D.; Zhang, P. Z.; Zhang, C.; Yan, C. H. Lanthanide nanoparticles: From design toward bioimaging and therapy. Chem. Rev. 2015, 115, 10725-10815.
[18]
Chen, G. Y.; Qiu, H. L.; Prasad, P. N.; Chen, X. Y. Upconversion nanoparticles: Design, nanochemistry, and applications in theranostics. Chem. Rev. 2014, 114, 5161-5214.
[19]
Gai, S.; Li, C.; Yang, P.; Lin, J. Recent progress in rare earth micro/ nanocrystals: Soft chemical synthesis, luminescent properties, and biomedical applications. Chem. Rev. 2014, 114, 2343-2389.
[20]
Li, X. M.; Zhang, F.; Zhao, D. Y. Lab on upconversion nanoparticles: Optical properties and applications engineering via designed nanostructure. Chem. Soc. Rev. 2015, 44, 1346-1378.
[21]
Tu, L. P.; Liu, X. M.; Wu, F.; Zhang, H. Excitation energy migration dynamics in upconversion nanomaterials. Chem. Soc. Rev. 2015, 44, 1331-1345.
[22]
Wang, F.; Wang, J.; Liu, X. G. Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles. Angew. Chem., Int. Ed. 2010, 49, 7456-7460.
[23]
Arppe, R.; Hyppänen, I.; Perälä, N.; Peltomaa, R.; Kaiser, M.; Wurth, C.; Christ, S.; Resch-Genger, U.; Schäferling, M.; Soukka, T. Quenching of the upconversion luminescence of NaYF4: Yb3+, Er3+ and NaYF4: Yb3+, Tm3+ nanophosphors by water: The role of the sensitizer Yb3+ in non-radiative relaxation. Nanoscale 2015, 7, 11746-11757.
[24]
Haase, M.; Schäfer, H. Upconverting nanoparticles. Angew. Chem., Int. Ed. 2011, 50, 5808-5829.
[25]
Chen, G. Y.; Yang, C. H.; Prasad, P. N. Nanophotonics and nanochemistry: Controlling the excitation dynamics for frequency up- and down-conversion in lanthanide-doped nanoparticles. Acc. Chem. Res. 2013, 46, 1474-1486.
[26]
Zuo, J.; Li, Q. Q.; Xue, B.; Li, C. X.; Chang, Y. L.; Zhang, Y. L.; Liu, X. M.; Tu, L. P.; Zhang, H.; Kong, X. G. Employing shells to eliminate concentration quenching in photonic upconversion nanostructure. Nanoscale 2017, 9, 7941-7946.
[27]
Chen, Q. S.; Xie, X. J.; Huang, B. L.; Liang, L. L.; Han, S. Y.; Yi, Z. G.; Wang, Y.; Li, Y.; Fan, D. Y.; Huang, L. et al. Confining excitation energy in Er3+-sensitized upconversion nanocrystals through Tm3+- mediated transient energy trapping. Angew. Chem., Int. Ed. 2017, 56, 7605-7609.
[28]
Zuo, J.; Tu, L. P.; Li, Q. Q.; Feng, Y. S.; Que, I.; Zhang, Y. L.; Liu, X. M.; Xue, B.; Cruz, L. J.; Chang, Y. L. et al. Near infrared light sensitive ultraviolet-blue Nanophotoswitch for imaging-guided “Off-On” therapy. ACS Nano 2018, 12, 3217-3225.
[29]
Na, H. J.; Jeong, J. S.; Chang, H. J.; Kim, H. Y.; Woo, K.; Lim, K.; Mkhoyan, K. A.; Jang, H. S. Facile synthesis of intense green light emitting LiGdF4: Yb, Er-based upconversion bipyramidal nanocrystals and their polymer composites. Nanoscale 2014, 6, 7461-7468.
[30]
Huang, P.; Zheng, W.; Zhou, S. Y.; Tu, D. T.; Chen, Z.; Zhu, H. M.; Li, R. F.; Ma, E.; Huang, M. D.; Chen, X. Y. Lanthanide-doped LiLuF4 Upconversion Nanoprobes for the detection of disease biomarkers. Angew. Chem., Int. Ed. 2014, 53, 1252-1257.
[31]
Mahalingam, V.; Vetrone, F.; Naccache, R.; Speghini, A.; Capobianco, J. A. Colloidal Tm3+/Yb3+-doped LiYF4 nanocrystals: Multiple luminescence spanning the UV to NIR regions via low-energy excitation. Adv. Mater. 2009, 21, 4025-4028.
[32]
Huang, P.; Zheng, W.; Tu, D. T.; Shang, X. Y.; Zhang, M. R.; Li, R. F.; Xu, J.; Liu, Y.; Chen, X. Y. Unraveling the electronic structures of neodymium in LiLuF4 Nanocrystals for ratiometric temperature sensing. Adv. Sci. 2019, 6, 1802282.
[33]
Aebischer, A.; Hostettler, M.; Hauser, J.; Krämer, K.; Weber, T.; Gudel, H. U.; Bürgi, H. B. Structural and spectroscopic characterization of active sites in a family of light-emitting sodium lanthanide tetrafluorides. Angew. Chem., Int. Ed. 2006, 45, 2802-2806.
[34]
Kim, H. J.; Song, J. S.; Kim, S. S. Efficiency enhancement of solar cell by down-conversion effect of Eu3+ doped LiGdF4. J. Korean Phys. Soc. 2004, 45, 609-613.
[35]
Wang, F.; Deng, R. R.; Wang, J.; Wang, Q. X.; Han, Y.; Zhu, H. M.; Chen, X. Y.; Liu, X. G. Tuning upconversion through energy migration in core-shell nanoparticles. Nat. Mater. 2011, 10, 968-973.
[36]
Babkevich, P.; Finco, A.; Jeong, M.; Piazza, B. D.; Kovacevic, I.; Klughertz, G.; Krämer, K. W.; Kraemer, C.; Adroja, D. T.; Goremychkin, E. et al. Neutron spectroscopic study of crystal-field excitations and the effect of the crystal field on dipolar magnetism in LiRF4 (R = Gd, Ho, Er, Tm, and Yb). Phys. Rev. B 2015, 92, 144422.
[37]
Kraemer, C.; Nikseresht, N.; Piatek, J. O.; Tsyrulin, N.; Dalla Piazza, B.; Kiefer, K.; Klemke, B.; Rosenbaum, T. F.; Aeppli, G.; Gannarelli, C. et al. Dipolar antiferromagnetism and quantum criticality in LiErF4. Science 2012, 336, 1416-1419.
[38]
Johnson, N. J. J.; Korinek, A.; Dong, C. H.; van Veggel, F. C. J. M. Self-focusing by ostwald ripening: A strategy for layer-by-layer epitaxial growth on upconverting nanocrystals. J. Am. Chem. Soc. 2012, 134, 11068-11071.
[39]
Dong, A. G.; Ye, X. C.; Chen, J.; Kang, Y. J.; Gordon, T.; Kikkawa, J. M.; Murray, C. B. A generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals. J. Am. Chem. Soc. 2011, 133, 998-1006.
[40]
Chen, G. Y.; Ohulchanskyy, T. Y.; Kachynski, A.; Ågren, H.; Prasad, P. N. Intense visible and near-infrared upconversion photoluminescence in colloidal LiYF4: Er3+ nanocrystals under excitation at 1,490 nm. ACS Nano 2011, 5, 4981-4986.
[41]
Vetrone, F.; Boyer, J. C.; Capobianco, J. A.; Speghini, A.; Bettinelli, M. Concentration-dependent near-infrared to visible upconversion in nanocrystalline and bulk Y2O3: Er3+. Chem. Mater. 2003, 15, 2737-2743.
[42]
Shang, X. Y.; Chen, P.; Jia, T. Q.; Feng, D. H.; Zhang, S.; Sun, Z. R.; Qiu, J. R. Upconversion luminescence mechanisms of Er3+ ions under excitation of an 800 nm laser. Phys. Chem. Chem. Phys. 2015, 17, 11481-11489.
[43]
Chan, E. M.; Han, G.; Goldberg, J. D.; Gargas, D. J.; Ostrowski, A. D.; Schuck, P. J.; Cohen, B. E.; Milliron, D. J. Combinatorial discovery of lanthanide-doped nanocrystals with spectrally pure upconverted emission. Nano Lett. 2012, 12, 3839-3845.
[44]
Couto dos Santos, M. A.; Antic-Fidancev, E.; Gesland, J. Y.; Krupa, J. C.; Lemaître-Blaise, M.; Porcher, P. Absorption and fluorescence of Er3+-doped LiYF4: Measurements and simulation. J. Alloys Compd. 1998, 275-277, 435-441.
Nano Research
Pages 2803-2811
Cite this article:
Zhang L, Li X, Wang W, et al. Construction of self-sensitized LiErF4: 0.5% Tm3+@LiYF4 upconversion nanoprobe for trace water sensing. Nano Research, 2020, 13(10): 2803-2811. https://doi.org/10.1007/s12274-020-2932-4
Topics:

765

Views

28

Crossref

N/A

Web of Science

28

Scopus

1

CSCD

Altmetrics

Received: 04 April 2020
Revised: 06 June 2020
Accepted: 13 June 2020
Published: 05 October 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return