AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A general bottom-up synthesis of CuO-based trimetallic oxide mesocrystal superstructures for efficient catalytic production of trichlorosilane

Hezhi Liu1,3,§Yongjun Ji2,1,§( )Jing Li1Yu Zhang1Xueguang Wang3Haijun Yu4Dingsheng Wang5Ziyi Zhong6,7Lin Gu8Guangwen Xu9Yadong Li5Fabing Su1,9,10( )
State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
State Key Laboratory of Advanced Special Steel, Shanghai University, Yanchang Road 149, Zhabei District, Shanghai 200072, China
College of Materials Sciences and Engineering, Beijing University of Technology, Beijing 100124, China
Department of Chemistry, Tsinghua University, Beijing 100084, China
College of Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), 241 Daxue Road, Shantou 515063, China
Department of Chemical Engineering, Technion-Israel Institute of Technology (IIT), Haifa 32 000, Israel
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Institute of Industrial Chemistry and Energy Technology, Shenyang University of Chemical Technology, Shenyang 110142, China
Zhongke Langfang Institute of Process Engineering, Fenghua Road No 1, Langfang Economic & Technical Development Zone, Langfang 065001, China

§ Hezhi Liu and Yongjun Ji contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Mesocrystals, the non-classical crystals with highly ordered nanoparticle superstructures, have shown great potential in many applications because of their newly collective properties. However, there is still a lack of a facile and general synthesis strategy to organize and integrate distinct components into complex mesocrystals, and of reported application for them in industrial catalytic reactions. Herein we report a general bottom-up synthesis of CuO-based trimetallic oxide mesocrystals (denoted as CuO-M1Ox-M2Oy, where M1 and M2 = Zn, In, Fe, Ni, Mn, and Co) using a simple precipitation method followed by a hydrothermal treatment and a topotactic transformation via calcination. When these mesocrystals were used as the catalyst to produce trichlorosilane (TCS) via Si hydrochlorination reaction, they exhibited excellent catalytic performance with much increased Si conversion and TCS selectivity. In particular, the TCS yield was increased 19-fold than that of the catalyst-free process. The latter is the current industrial process. The efficiently catalytic property of these mesocrystals is attributed to the formation of well-defined nanoscale heterointerfaces that can effectively facilitate the charge transfer, and the generation of the compressive and tensile strain on CuO near the interfaces among different metal oxides. The synthetic approach developed here could be applicable to fabricate versatile complicated metal oxide mesocrystals as novel catalysts for various industrial chemical reactions.

Electronic Supplementary Material

Download File(s)
12274_2020_2934_MOESM1_ESM.pdf (10.1 MB)

References

[1]
Sturm, E. V.; Cölfen, H. Mesocrystals: Structural and morphogenetic aspects. Chem. Soc. Rev. 2016, 45, 5821-5833.
[2]
Cölfen, H.; Antonietti, M. Mesocrystals: Inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew. Chem., Int. Ed. 2005, 44, 5576-5591.
[3]
Cölfen, H.; Antonietti, M. Mesocrystals and Nonclassical Crystallization; John Wiley & Sons, Ltd: Chichester, 2008.
[4]
Ma, M. G.; Cölfen, H. Mesocrystals-applications and potential. Curr. Opin. Colloid Interface Sci. 2014, 19, 56-65.
[5]
Tartaj, P.; Amarilla, J. M. Multifunctional response of anatase nanostructures based on 25 nm mesocrystal-like porous assemblies. Adv. Mater. 2011, 23, 4904-4907.
[6]
Wu, X. L.; Xiong, S. J.; Liu, Z.; Chen, J.; Shen, J. C.; Li, T. H.; Wu, P. H.; Chu, P. K. Green light stimulates terahertz emission from mesocrystal microspheres. Nat. Nanotechnol. 2011, 6, 103-106.
[7]
Wang, T.; Wang, X. R.; LaMontagne, D.; Wang, Z. L.; Wang, Z. W.; Cao, Y. C. Shape-controlled synthesis of colloidal superparticles from nanocubes. J. Am. Chem. Soc. 2012, 134, 18225-18228.
[8]
Sun, S. D.; Zhang, X. Z.; Zhang, J.; Wang, L. Q.; Song, X. P.; Yang, Z. M. Surfactant-free CuO mesocrystals with controllable dimensions: Green ordered-aggregation-driven synthesis, formation mechanism and their photochemical performances. CrystEngComm 2013, 15, 867-877.
[9]
Deng, S. Z.; Tjoa, V.; Fan, H. M.; Tan, H. R.; Sayle, D. C.; Olivo, M.; Mhaisalkar, S.; Wei, J.; Sow, C. H. Reduced graphene oxide conjugated Cu2O nanowire mesocrystals for high-performance NO2 gas sensor. J. Am. Chem. Soc. 2012, 134, 4905-4917.
[10]
Fang, J. X.; Du, S. Y.; Lebedkin, S.; Li, Z. Y.; Kruk, R.; Kappes, M.; Hahn, H. Gold mesostructures with tailored surface topography and their self-assembly arrays for surface-enhanced Raman spectroscopy. Nano Lett. 2010, 10, 5006-5013.
[11]
Lim, B.; Lu, X. M.; Jiang, M. J.; Camargo, P. H. C.; Cho, E. C.; Lee, E. P.; Xia, Y. N. Facile synthesis of highly faceted multioctahedral Pt nanocrystals through controlled overgrowth. Nano Lett. 2008, 8, 4043-4047.
[12]
Huang, X. Q.; Tang, S. H.; Yang, J.; Tan, Y. M.; Zheng, N. F. Etching growth under surface confinement: An effective strategy to prepare mesocrystalline Pd nanocorolla. J. Am. Chem. Soc. 2011, 133, 15946-15949.
[13]
Querejeta-Fernández, A.; Hernández-Garrido, J. C.; Yang, H. X.; Zhou, Y. L.; Varela, A.; Parras, M.; Calvino-Gámez, J. J.; González- Calbet, J. M.; Green, P. F.; Kotov, N. A. Unknown aspects of self- assembly of PbS microscale superstructures. ACS Nano. 2012, 6, 3800-3812.
[14]
Zheng, J. S.; Huang, F.; Yin, S. G.; Wang, Y. J.; Lin, Z.; Wu, X. L.; Zhao, Y. B. Correlation between the photoluminescence and oriented attachment growth mechanism of CdS quantum dots. J. Am. Chem. Soc. 2010, 132, 9528-9530.
[15]
Zhang, P.; Ochi, T.; Fujitsuka, M.; Kobori, Y.; Majima, T.; Tachikawa, T. Topotactic epitaxy of SrTiO3 mesocrystal superstructures with anisotropic construction for efficient overall water splitting. Angew. Chem., Int. Ed. 2017, 56, 5299-5303.
[16]
Zhou, L.; Smyth-Boyle, D.; O’Brien, P. A facile synthesis of uniform NH4TiOF3 mesocrystals and their conversion to TiO2 mesocrystals. J. Am. Chem. Soc. 2008, 130, 1309-1320.
[17]
Song, R. Q.; Cölfen, H.; Xu, A. W.; Hartmann, J.; Antonietti, M. Polyelectrolyte-directed nanoparticle aggregation: Systematic morphogenesis of calcium carbonate by nonclassical crystallization. ACS Nano 2009, 3, 1966-1978.
[18]
Tachikawa, T.; Majima, T. Metal oxide mesocrystals with tailored structures and properties for energy conversion and storage applications. NPG Asia Mater. 2014, 6, e100.
[19]
Sturm, E. V.; Cölfen, H. Mesocrystals: Past, presence, future. Crystals 2017, 7, 207.
[20]
Bian, Z. F.; Tachikawa, T.; Zhang, P.; Fujitsuka, M.; Majima, T. A nanocomposite superstructure of metal oxides with effective charge transfer interfaces. Nat. Commun. 2014, 5, 3038.
[21]
O’Sullivan, M.; Hadermann, J.; Dyer, M. S.; Turner, S.; Alaria, J.; Manning, T. D.; Abakumov, A. M.; Claridge, J. B.; Rosseinsky, M. J. Interface control by chemical and dimensional matching in an oxide heterostructure. Nat. Chem. 2016, 8, 347-353.
[22]
Hwang, H. Y.; Iwasa, Y.; Kawasaki, M.; Keimer, B.; Nagaosa, N.; Tokura, Y. Emergent phenomena at oxide interfaces. Nat. Mater. 2012, 11, 103-113.
[23]
Fang, J. X.; Ding, B. J.; Gleiter, H. Mesocrystals: Syntheses in metals and applications. Chem. Soc. Rev. 2011, 40, 5347-5360.
[24]
Kargar, A.; Jing, Y.; Kim, S. J.; Riley, C. T.; Pan, X. Q.; Wang, D. L. ZnO/CuO heterojunction branched nanowires for photoelectrochemical hydrogen generation. ACS Nano 2013, 7, 11112-11120.
[25]
Pan, C. A.; Ma, T. P. Work function of In2O3 film as determined from internal photoemission. Appl. Phys. Lett. 1980, 37, 714-716.
[26]
De Yoreo, J. J.; Gilbert, P. U. P. A.; Sommerdijk, N. A. J. M.; Lee Penn, R.; Whitelam, S.; Joester, D.; Zhang, H. Z.; Rimer, J. D.; Navrotsky, A.; Banfield, J. F. et al. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 2015, 349, aaa6760.
[27]
Geuchies, J. J.; van Overbeek, C.; Evers, W. H.; Goris, B.; De Backer, A.; Gantapara, A. P.; Rabouw, F. T.; Hilhorst, J.; Peters, J. L.; Konovalov, O. et al. In situ study of the formation mechanism of two-dimensional superlattices from PbSe nanocrystals. Nat. Mater. 2016, 15, 1248-1254.
[28]
Nazeeruddin, M. K. In retrospect: Twenty-five years of low-cost solar cells. Nature 2016, 538, 463-464.
[29]
Kamat, P. V. Photovoltaics: Capturing hot electrons. Nat. Chem. 2010, 2, 809-810.
[30]
Service, R. F. Perovskite solar cells gear up to go commercial. Science 2016, 354, 1214-1215.
[31]
Voorhoeve, R. J. H.; Vlugter, J. C. Mechanism and kinetics of the metal-catalyzed synthesis of methylchlorosilanes: III. The catalytically active form of the copper catalyst. J. Catal. 1965, 4, 123-133.
[32]
Ji, Y. J.; Jin, Z. Y.; Li, J.; Zhang, Y.; Liu, H. Z.; Shi, L. S.; Zhong, Z. Y.; Su, F. B. Rambutan-like hierarchically heterostructured CeO2-CuO hollow microspheres: Facile hydrothermal synthesis and applications. Nano Res. 2017, 10, 381-396.
[33]
Okamoto, M.; Suzuki, E.; Ono, Y. Reaction pathway of formation of methoxysilanes in the reaction of silicon with methanol catalyzed by copper(I) chloride. J. Catal. 1994, 145, 537-543.
[34]
Zou, S. Y.; Ji, Y. J.; Li, J.; Zhang, Y.; Jin, Z. Y.; Jia, L. H.; Guo, X. F.; Zhong, Z. Y.; Su, F. B. Novel leaflike Cu-O-Sn nanosheets as highly efficient catalysts for the Rochow reaction. J. Catal. 2016, 337, 1-13.
[35]
Liu, H. Z.; Li, J.; Ji, Y. J.; Zhang, Z. L.; Wang, X. G.; Zhong, Z. Y.; Su, F. B. Diffusion-controlled synthesis of Cu-based for the Rochow reaction. Sci. China Mater. 2017, 60, 1215-1226.
[36]
Zhang, Y.; Ji, Y. J.; Li, J.; Liu, H. Z.; Hu, X.; Zhong, Z. Y.; Su, F. B. Morphology-dependent catalytic properties of nanocupric oxides in the Rochow reaction. Nano Res. 2018, 11, 804-819.
[37]
Li, J.; Yin, L. L.; Ji, Y. J.; Liu, H. Z.; Zhang, Y.; Gong, X. Q.; Zhong, Z. Y.; Su, F. B. Impact of the Cu2O microcrystal planes on active phase formation in the Rochow reaction and an experimental and theoretical understanding of the reaction mechanism. J. Catal. 2018, 361, 73-83.
[38]
Bu, L. Z.; Zhang, N.; Guo, S. J.; Zhang, X.; Li, J.; Yao, J. L.; Wu, T.; Lu, G.; Ma, J. Y.; Su, D. et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 2016, 354, 1410-1414.
[39]
Escudero-Escribano, M.; Malacrida, P.; Hansen, M. H.; Vej-Hansen, U. G.; Velázquez-Palenzuela, A.; Tripkovic, V.; Schiøtz, J.; Rossmeisl, J.; Stephens, I. E. L.; Chorkendorff, I. Tuning the activity of Pt alloy electrocatalysts by means of the lanthanide contraction. Science 2016, 352, 73-76.
[40]
Wang, H. T.; Xu, S. C.; Tsai, C.; Li, Y. Z.; Liu, C.; Zhao, J.; Liu, Y. Y.; Yuan, H. Y.; Abild-Pedersen, F.; Prinz, F. B. et al. Direct and continuous strain control of catalysts with tunable battery electrode materials. Science 2016, 354, 1031-1036.
[41]
Kim, D.; Xie, C. L.; Becknell, N.; Yu, Y.; Karamad, M.; Chan, K. R.; Crumlin, E. J.; Nørskov, J. K.; Yang, P. D. Electrochemical activation of CO2 through atomic ordering transformations of AuCu nanoparticles. J. Am. Chem. Soc. 2017, 139, 8329-8336.
[42]
Mao, J. J.; Chen, W. X.; Sun, W. M.; Chen, Z.; Pei, J. J.; He, D. S.; Lv, C. L.; Wang, D. S.; Li, Y. D. Rational control of the selectivity of a ruthenium catalyst for hydrogenation of 4-nitrostyrene by strain regulation. Angew. Chem., Int. Ed. 2017, 56, 11971-11975.
[43]
Feng, Q. C.; Zhao, S.; He, D. S.; Tian, S. B.; Gu, L.; Wen, X. D.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Strain engineering to enhance the electrooxidation performance of atomic-layer Pt on intermetallic Pt3Ga. J. Am. Chem. Soc. 2018, 140, 2773-2776.
Nano Research
Pages 2819-2827
Cite this article:
Liu H, Ji Y, Li J, et al. A general bottom-up synthesis of CuO-based trimetallic oxide mesocrystal superstructures for efficient catalytic production of trichlorosilane. Nano Research, 2020, 13(10): 2819-2827. https://doi.org/10.1007/s12274-020-2934-2
Topics:

841

Views

19

Crossref

N/A

Web of Science

18

Scopus

1

CSCD

Altmetrics

Received: 24 April 2020
Revised: 07 June 2020
Accepted: 13 June 2020
Published: 05 October 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return