Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Atomically precise metal-chalcogenide semiconductor molecular nanoclusters with high dispersibility: Designed synthesis and intracluster photocarrier dynamics

Jiaxu Zhang1,§Chaochao Qin2,§Yeshuang Zhong3,§Xiang Wang1Wei Wang1,3Dandan Hu1Xiaoshuang Liu1Chaozhuang Xue1Rui Zhou1Lei Shen4Yinglin Song4Dingguo Xu3Zhien Lin3Jun Guo5Haifeng Su6Dong-Sheng Li7Tao Wu1()
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, School of Physics, Henan Normal University, Xinxiang 453007, China
College of Chemistry, Sichuan University, Chengdu 610064, China
School of Physical Science and Technology, Soochow University, Suzhou 215123, China
Testing & Analysis Centre, Soochow University, Suzhou 215123, China
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Centre for New Energy Microgrid, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, China

§ Jiaxu Zhang, Chaochao Qin, and Yeshuang Zhong contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image

Abstract

A comprehensive understanding of excited-state dynamics of semiconductor quantum dots or nanomaterials at the atomic or molecular level is of scientific importance. Pure inorganic (or non-covalently protected) seimiconductor molecular nanoclusters with atomically precise structure are contributive to establish accurate correlation of excited-state dynamics with their composition/ structure, however, the related studies are almost blank because of unresolved solvent dispersion issue. Herein, we designedly created the largest discrete chalcogenide seimiconductor molecular nanoclusters (denoted P2-CuMSnS, M = In or/and Ga) with great dispersibility, and revealed an interesting intracluster "core-shell" charge transfer relaxation dynamics. A systematic red shift in absorption spectra with the gradual substitution of In by Ga was experimentally and computationally investigated, and femtosecond transient absorption measurements further manifested there were three ultrafast processes in excited-state dynamics of P2 nanoclusters with the corresponding amplitudes directed by composition variation. Current results hold the great promise of the solution-processible applications of semiconductor-NC-based quantum dots and facilitate the development of atomically precise nano-chemistry.

Electronic Supplementary Material

Download File(s)
12274_2020_2936_MOESM1_ESM.pdf (3.8 MB)
12274_2020_2936_MOESM2_ESM.cif (3.2 MB)
12274_2020_2936_MOESM3_ESM.cif (2.5 MB)

References

[1]
Shirasaki, Y.; Supran, G. J.; Bawendi, M. G.; Bulović, V. Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photonics 2013, 7, 13-23.
[2]
Regulacio, M. D.; Han, M. Y. Multinary I-III-VI2 and I2-II-IV-VI4 semiconductor nanostructures for photocatalytic applications. Acc. Chem. Res. 2016, 49, 511-519.
[3]
Stroyuk, O.; Raevskaya, A.; Gaponik, N. Solar light harvesting with multinary metal chalcogenide nanocrystals. Chem. Soc. Rev. 2018, 47, 5354-5422.
[4]
McDonald, S. A.; Konstantatos, G.; Zhang, S. G.; Cyr, P. W.; Klem, E. J. D.; Levina, L.; Sargent, E. H. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat. Mater. 2005, 4, 138-142.
[5]
Lan, X. Z.; Masala, S.; Sargent, E. H. Charge-extraction strategies for colloidal quantum dot photovoltaics. Nat. Mater. 2014, 13, 233-240.
[6]
Wheeler, D. A.; Zhang, J. Z. Exciton dynamics in semiconductor nanocrystals. Adv. Mater. 2013, 25, 2878-2896.
[7]
Kambhampati, P. Unraveling the structure and dynamics of excitons in semiconductor quantum dots. Acc. Chem. Res. 2011, 44, 1-13.
[8]
Mongin, C.; Garakyaraghi, S.; Razgoniaeva, N.; Zamkov, M.; Castellano, F. N. Direct observation of triplet energy transfer from semiconductor nanocrystals. Science, 2016, 351, 369-372.
[9]
Huang, Z. Y.; Xu, Z. H.; Mahboub, M.; Li, X.; Taylor, J. W.; Harman, W. H.; Lian, T. Q.; Tang, M. L. PbS/CdS core-shell quantum dots suppress charge transfer and enhance triplet transfer. Angew. Chem., Int. Ed. 2017, 56, 16583-16587.
[10]
Sun, Q.; Wang, S. P.; Zhao, C. Y.; Leng, J.; Tian, W. M.; Jin, S. Y. Excitation-dependent emission color tuning from an individual Mn-doped perovskite microcrystal. J. Am. Chem. Soc. 2019, 141, 20089-20096.
[11]
Wu, K. F.; Lian, T. Q. Quantum confined colloidal nanorod heterostructures for solar-to-fuel conversion. Chem. Soc. Rev. 2016, 45, 3781-3810.
[12]
Jin, C. H.; Ma, E. Y.; Karni, O.; Regan, E. C.; Wang, F.; Heinz, T. F. Ultrafast dynamics in van der Waals heterostructures. Nat. Nanotechnol. 2018, 13, 994-1003.
[13]
Li, G.; Lei, Z.; Wang, Q. M. Luminescent molecular Ag-S nanocluster [Ag62S13(SBut)32](BF4)4. J. Am. Chem. Soc. 2010, 132, 17678-17679.
[14]
Huang, R. W.; Dong, X. Y.; Yan, B. J.; Du, X. S.; Wei, D. H.; Zang, S. Q.; Mak, T. C. W. Tandem silver cluster isomerism and mixed linkers to modulate the photoluminescence of cluster-assembled materials. Angew. Chem., Int. Ed. 2018, 57, 8560-8566.
[15]
Liu, X.; Yuan, J. Y.; Yao, C. H.; Chen, J. S.; Li, L. L.; Bao, X. L.; Yang, J. L.; Wu, Z. K. Crystal and solution photoluminescence of MAg24(SR)18 (M = Ag/Pd/Pt/Au) nanoclusters and some implications for the photoluminescence mechanisms. J. Phys. Chem. C 2017, 121, 13848-13853.
[16]
Zhou, M.; Yao, C. H.; Sfeir, M. Y.; Higaki, T.; Wu, Z. K.; Jin, R. C. Excited-state behaviors of M1Au24(SR)18 nanoclusters: The number of valence electrons matters. J. Phys. Chem. C 2018, 122, 13435-13442.
[17]
Zhou, M.; Higaki, T.; Hu, G. X.; Sfeir, M. Y.; Chen, Y. X.; Jiang, D. E.; Jin, R. C. Three-orders-of-magnitude variation of carrier lifetimes with crystal phase of gold nanoclusters. Science 2019, 364, 279-282.
[18]
Wu, B.; Hu, J. H.; Cui, P.; Jiang, L.; Chen, Z. W.; Zhang, Q.; Wang, C. R.; Luo, Y. Visible-light photoexcited electron dynamics of scandium endohedral metallofullerenes: The cage symmetry and substituent effects. J. Am. Chem. Soc. 2015, 137, 8769-8774.
[19]
Soloviev, V. N.; Eichhöfer, A.; Fenske, D.; Banin, U. Size-dependent optical spectroscopy of a homologous series of CdSe cluster molecules. J. Am. Chem. Soc. 2001, 123, 2354-2364.
[20]
Bu, X. H.; Zheng, N. F.; Feng, P. Y. Tetrahedral chalcogenide clusters and open frameworks. Chem. —Eur. J. 2004, 10, 3356-3362.
[21]
Feng, P. Y.; Bu, X. H.; Zheng, N. F. The interface chemistry between chalcogenide clusters and open framework chalcogenides. Acc. Chem. Res. 2005, 38, 293-303.
[22]
Lee, G. S. H.; Craig, D. C.; Ma, I.; Scudder, M. L.; Bailey, T. D.; Dance, I, G. [S4Cd17(SPh)28]2-, the first member of a third series of tetrahedral [SwMx(SR)y]z- clusters. J. Am. Chem. Soc. 1988, 110, 4863-4864.
[23]
Herron, N.; Calabrese, J. C.; Farneth, W. E.; Wang, Y. Crystal structure and optical properties of Cd32S14(SC6H5)36·DMF4, a cluster with a 15 angstrom CdS Core. Science 1993, 259, 1426-1428.
[24]
Zheng, N. F.; Bu, X. H.; Lu, H. W.; Zhang, Q. C.; Feng, P. Y. Crystalline superlattices from single-sized quantum dots. J. Am. Chem. Soc. 2005, 127, 11963-11965.
[25]
Zimmermann, C.; Melullis, M.; Dehnen, S. Reactivity of chalcogenostannate salts: Unusual synthesis and structure of a compound containing ternary cluster anions [Co44-Se)(SnSe4)4]10-. Angew. Chem., Int. Ed. 2002, 41, 4269-4272.
[26]
Dehnen, S.; Brandmayer, M. K. Reactivity of chalcogenostannate compounds: Syntheses, crystal structures, and electronic properties of novel compounds containing discrete ternary anions [MII44- Se)(SnSe4)4]10- (MII) Zn, Mn). J. Am. Chem. Soc. 2003, 125, 6618-6619.
[27]
Palchik, O.; Iyer, R. G.; Liao, J. H.; Kanatzidis, M. G. K10M4Sn4S17 (M = Mn, Fe, Co, Zn): Soluble quaternary sulfides with the discrete [M4Sn4S17]10- supertetrahedral clusters. Inorg. Chem. 2003, 42, 5052-5054.
[28]
Palchik, O.; Iyer, R. G.; Canlas, C. G.; Weliky, D. P.; Kanatzidis, M. G. K10M4M′4S17 (M = Mn, Fe, Co, Zn; M′ = Sn, Ge) and Cs10Cd4Sn4S17: Compounds with a discrete supertetrahedral cluster. Z. Anorg. Allg. Chem. 2004, 630, 2237-2247.
[29]
Nguyen, K. A.; Pachter, R.; Day, P. N.; Su, H. B. Theoretical analysis of structures and electronic spectra in molecular cadmium chalcogenide clusters. J. Chem. Phys. 2015, 142, 234305.
[30]
Lin, J.; Zhang, Q.; Wang, L.; Liu, X. C.; Yan, W. B.; Wu, T.; Bu, X. H.; Feng, P. Y. Atomically precise doping of monomanganese ion into coreless supertetrahedral chalcogenide nanocluster inducing unusual red shift in Mn2+ emission. J. Am. Chem. Soc. 2014, 136, 4769-4779.
[31]
Zhang, Q.; Lin, J.; Yang, Y. T.; Qin, Z. Z.; Li, D. S.; Wang, S.; Liu, Y. P.; Zou, X. X.; Wu, Y. B.; Wu, T. Exploring Mn2+-location- dependent red emission from (Mn/Zn)-Ga-Sn-S supertetrahedral nanoclusters with relatively precise dopant positions. J. Mater. Chem. C 2016, 4, 10435-10444.
[32]
Zhang, Y. Y.; Wang, X.; Hu, D. D.; Xue, C. Z.; Wang, W.; Yang, H. J.; Li, D. S.; Wu, T. Monodisperse ultrasmall manganese-doped multimetallic oxysulfide nanoparticles as highly efficient oxygen reduction electrocatalyst. ACS Appl. Mater. Interfaces 2018, 10, 13413-13424.
[33]
Liu, D. L.; Liu, Y.; Huang, P.; Zhu, C.; Kang, Z. H.; Shu, J.; Chen, M. Z.; Zhu, X.; Guo, J.; Zhuge, L. J. et al. Highly tunable heterojunctions from multimetallic sulfide nanoparticles and silver nanowires. Angew. Chem., Int. Ed. 2018, 57, 5374-5378.
[34]
Liu, D. L.; Fan, X.; Wang, X.; Hu, D. D.; Xue, C. Z.; Liu, Y.; Wang, Y.; Zhu, X.; Guo, J.; Lin, H. P. et al. Cooperativity by multi-metals confined in supertetrahedral sulfide nanoclusters to enhance electrocatalytic hydrogen evolution. Chem. Mater. 2019, 31, 553-559.
[35]
Hao, M. T.; Hu, Q. Q.; Zhang, Y. F.; Luo, M. B.; Wang, Y. Q.; Hu, B.; Li, J. R.; Huang, X. Y. Soluble supertetrahedral chalcogenido T4 clusters: High stability and enhanced hydrogen evolution activities. Inorg. Chem. 2019, 58, 5126-5133.
[36]
Li, Z. Q.; Mo, C. J.; Guo, Y.; Xu, N. N.; Zhu, Q. Y.; Dai, J. Discrete supertetrahedral CuInS nanoclusters and their application in fabrication of cluster-sensitized TiO2 photoelectrodes. J. Mater. Chem. A 2017, 5, 8519-8525.
[37]
Wu, T.; Wang, L.; Bu, X. H.; Chau, V.; Feng, P. Y. Largest molecular clusters in the supertetrahedral Tn series. J. Am. Chem. Soc. 2010, 132, 10823-10831.
[38]
Xiong, W. W.; Li, J. R.; Hu, B.; Tan, B.; Li, R. F.; Huang, X. Y. Largest discrete supertetrahedral clusters synthesized in ionic liquids. Chem. Sci. 2012, 3, 1200-1204.
[39]
Wu, T.; Zhang, Q.; Hou, Y.; Wang, L.; Mao, C. Y.; Zheng, S. T.; Bu, X. H.; Feng, P. Y. Monocopper doping in Cd-In-S supertetrahedral nanocluster via two-step strategy and enhanced photoelectric response. J. Am. Chem. Soc. 2013, 135, 10250-10253.
[40]
Wu, T.; Bu, X. H.; Zhao, X.; Khazhakyan, R.; Feng, P. Y. Phase selection and site-selective distribution by tin and sulfur in supertetrahedral zinc gallium selenides. J. Am. Chem. Soc. 2011, 133, 9616-9625.
[41]
Zheng, N. F.; Bu, X. H.; Feng, P. Y. Pentasupertetrahedral clusters as building blocks for a three-dimensional sulfide superlattice. Angew. Chem., Int. Ed. 2004, 43, 4753-4755.
[42]
Zhang, J. X.; Wang, X.; Lv, J.; Li, D. S.; Wu, T. A multivalent mixed-metal strategy for single-Cu+-ion-bridged cluster-based chalcogenide open frameworks for sensitive nonenzymatic detection of glucose. Chem. Commun. 2019, 55, 6357-6360.
[43]
Lu, Z. D.; Yin, Y. D. Colloidal nanoparticle clusters: Functional materials by design. Chem. Soc. Rev. 2012, 41, 6874-6887.
[44]
Bawendi, M. G.; Wilson, W. L.; Rothberg, L.; Carroll, P. J.; Jedju, T. M.; Steigerwald, M. L.; Brus, L. E. Electronic structure and photoexcited-carrier dynamics in nanometer-size CdSe clusters. Phys. Rev. Lett. 1990, 65, 1623-1626.
[45]
Döllefeld, H.; Weller, H.; Eychmüller, A. Semiconductor nanocrystal assemblies: Experimental pitfalls and a simple model of particle- particle interaction. J. Phys. Chem. B 2002, 106, 5604-5608.
[46]
Döllefeld, H.; Weller, H.; Eychmüller, A. Particle-particle interactions in semiconductor nanocrystal assemblies. Nano Lett. 2001, 1, 267-269.
[47]
Snellenburg, J. J.; Laptenok, S.; Seger, R.; Mullen, K. M.; van Stokkum, I. H. M. Glotaran: A Java-based graphical user interface for the R package TIMP. J. Stat. Soft. 2012, 49, 1-22.
[48]
Zhou, M.; Zeng, C. J.; Sfeir, M. Y.; Cotlet, M.; Iida, K.; Nobusada, K.; Jin, R. C. Evolution of excited-state dynamics in periodic Au28, Au36, Au44, and Au52 nanoclusters. J. Phys. Chem. Lett. 2017, 8, 4023-4030.
[49]
Miller, S. A.; Womick, J. M.; Parker, J. F.; Murray, R. W.; Moran, A. M. Femtosecond relaxation dynamics of Au25L18- monolayer-protected clusters. J. Phys. Chem. C 2009, 113, 9440-9444.
[50]
Qian, H. F.; Sfeir, M. Y.; Jin, R. C. Ultrafast relaxation dynamics of [Au25(SR)18]q nanoclusters: Effects of charge state. J. Phys. Chem. C 2010, 114, 19935-19940.
[51]
Zhou, M.; Qian, H. F.; Sfeir, M. Y.; Nobusada, K.; Jin, R. C. Effects of single atom doping on the ultrafast electron dynamics of M1Au24(SR)18 (M = Pd, Pt) nanoclusters. Nanoscale 2016, 8, 7163-7171.
Nano Research
Pages 2828-2836
Cite this article:
Zhang J, Qin C, Zhong Y, et al. Atomically precise metal-chalcogenide semiconductor molecular nanoclusters with high dispersibility: Designed synthesis and intracluster photocarrier dynamics. Nano Research, 2020, 13(10): 2828-2836. https://doi.org/10.1007/s12274-020-2936-0
Topics:
Metrics & Citations  
Article History
Copyright
Return