AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Efficient synthesis of lithium rare-earth tetrafluoride nanocrystals via a continuous flow method

Jinsong SuiJunyu YanKai Wang( )Guangsheng Luo
The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
Show Author Information

Graphical Abstract

Abstract

As an important upconversion illuminant material, LiREF4 nanocrystals were efficiently synthesized in a continuous reactor with the assistant of a new precursor solution. The employed trioctylamine solvent in the solution had a strong interaction with HF, and helped to avoid the generation of unnecessary solid components as LiF and NH4REF4 during the reaction. A silicon carbide reactor was developed to carry out the synthesis reaction, where LiYF4:Yb,Er/Ho/Tm quickly nucleated in 5 min at 300 °C. The reaction time to successfully prepare 15 nm sized nanocrystals was less than 30 min, and the space-time yield of the flow synthesis method was 14.8 times that of a control group batch reaction. The prepared nanocrystals had a strong illuminant ability, which could find its use in the area of security mark printing.

Electronic Supplementary Material

Download File(s)
12274_2020_2938_MOESM3_ESM.pdf (789.2 KB)

References

[1]
Zhou, J.; Liu, Q.; Feng, W.; Sun, Y.; Li, F. Y. Upconversion luminescent materials: Advances and applications. Chem. Rev. 2015, 115, 395-465.
[2]
Yang, B. X.; Wang, Y. B.; Wei, T.; Pan, Y.; Zhou, E. L.; Yuan, Z.; Han, Y. D.; Li, M. X.; Ling, X. C.; Yin, L. S. et al. Solution-processable near-infrared-responsive composite of perovskite nanowires and photon-upconversion nanoparticles. Adv. Funct. Mater. 2018, 28, 1801782.
[3]
Soni, A. K.; Rai, V. K. SrMoO4:Er3+-Yb3+ upconverting phosphor for photonic and forensic applications. Solid State Sci. 2016, 58, 129-137.
[4]
Hlaváček, A.; Křivánková, J.; Přikryl, J.; Foret, F. Photon-upconversion barcoding with multiple barcode channels: Application for droplet microfluidics. Anal. Chem. 2019, 91, 12630-12635.
[5]
Hong, E. L.; Liu, L. M.; Bai, L. M.; Xia, C. H.; Gao, L.; Zhang, L. W.; Wang, B. Q. Control synthesis, subtle surface modification of rare-earth-doped upconversion nanoparticles and their applications in cancer diagnosis and treatment. Mater. Sci. Eng. C 2019, 5, 110097.
[6]
Kong, M. Y.; Gu, Y. Y.; Liu, Y. L.; Shi, Y. B.; Wu, N.; Feng, W.; Li, F. Y. Luminescence lifetime-based in vivo detection with responsive rare earth-dye nanocomposite. Small 2019, 15, 1904487.
[7]
Zong, L.; Wang, Z.; Yu, R. Lanthanide-doped photoluminescence hollow structures: Recent advances and applications. Small 2019, 15, 1804510.
[8]
Haase, M.; Schäfer, H. Upconverting nanoparticles. Angew. Chem., Int. Ed. 2011, 50, 5808-5829.
[9]
Wang, F.; Han, Y.; Lim, C. S.; Lu, Y. H.; Wang, J.; Xu, J.; Chen, H. Y.; Zhang, C.; Hong, M. H.; Liu, X. G. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 2010, 463, 1061-1065.
[10]
Naduviledathu Raj, A.; Rinkel, T.; Haase, M. Ostwald ripening, particle size focusing, and decomposition of sub-10 nm NaREF4 (RE = La, Ce, Pr, Nd) nanocrystals. Chem. Mater. 2014, 26, 5689-5694.
[11]
Mahalingam, V.; Vetrone, F.; Naccache, R.; Speghini, A.; Capobianco, J. A. Colloidal Tm3+/Yb3+-doped LiYF4 nanocrystals: Multiple luminescence spanning the UV to NIR regions via low-energy excitation. Adv. Mater. 2009, 21, 4025-4028.
[12]
Cheng, L.; Wang, C.; Liu, Z. Upconversion nanoparticles and their composite nanostructures for biomedical imaging and cancer therapy. Nanoscale 2013, 5, 23-37.
[13]
Liu, C. H.; Wang, H.; Li, X.; Chen, D. P. Monodisperse, size-tunable and highly efficient β-NaYF4:Yb, Er(Tm) up-conversion luminescent nanospheres: Controllable synthesis and their surface modifications. J. Mater. Chem. 2009, 19, 3546-3553.
[14]
Li, Y. Y.; Zhao, L.; Xiao, M.; Huang, Y. M.; Dong, B. H.; Xu, Z. X.; Wan, L.; Li, W. L.; Wang, S. M. Synergic effects of upconversion nanoparticles NaYbF4:Ho3+ and ZrO2 enhanced the efficiency in hole-conductor-free perovskite solar cells. Nanoscale 2018, 10, 22003-22011.
[15]
Chien, H. W.; Wu, C. H.; Yang, C. H.; Wang, T. L. Multiple doping effect of LiYF4:Yb3+/Er3+/Ho3+/Tm3+@LiYF4:Yb3+ core/shell nanoparticles and its application in Hg2+ sensing detection. J. Alloy. Compd. 2019, 806, 272-282.
[16]
Zhang, Q.; Yan, B. Hydrothermal synthesis and characterization of LiREF4 (RE = Y, Tb-Lu) nanocrystals and their core-shell nanostructures. Inorg. Chem. 2010, 49, 6834-6839.
[17]
Li, X. L.; Xue, Z. L.; Liu, H. R. Hydro-thermal synthesis of PEGylated Mn2+ dopant controlled NaYF4:Yb/Er up-conversion nano-particles for multi-color tuning. J. Alloy. Compd. 2016, 681, 379-383.
[18]
Lu, S.; Tu, D. T.; Li, X. J.; Li, R. F.; Chen, X. Y. A facile “ship- in-a-bottle” approach to construct nanorattles based on upconverting lanthanide-doped fluorides. Nano Res. 2016, 9, 187-197.
[19]
Park, H.; Yoo, G. Y.; Kim, M. S.; Kim, K.; Lee, C.; Park, S.; Kim, W. Thin film fabrication of upconversion lanthanide-doped NaYF4 by a sol-gel method and soft lithographical nanopatterning. J. Alloy. Compd. 2017, 728, 927-35.
[20]
Li, Z. Q.; Zhang, Y. Monodisperse silica-coated polyvinylpyrrolidone/ NaYF4 nanocrystals with multicolor upconversion fluorescence emission. Angew. Chem., Int. Ed. 2006, 45, 7732-7735.
[21]
Sui, Y. Q.; Tao, K.; Tian, Q.; Sun, K. Interaction between Y3+ and oleate ions for the cubic-to-hexagonal phase transformation of NaYF4 nanocrystals. J. Phys. Chem. C 2012, 116, 1732-1739.
[22]
Rinkel, T.; Nordmann, J.; Raj, A. N.; Haase, M. Ostwald-ripening and particle size focussing of sub-10 nm NaYF4 upconversion nanocrystals. Nanoscale 2014, 6, 14523-14530.
[23]
Rinkel, T.; Raj, A. N.; Dühnen, S.; Haase, M. Synthesis of 10 nm β-NaYF4:Yb, Er/NaYF4 core/shell upconversion nanocrystals with 5 nm Particle Cores. Angew. Chem., Int. Ed. 2016, 55, 1164-1167.
[24]
Hong, A. R.; Kim, S. Y.; Cho, S. H.; Lee, K.; Jang, H. S. Facile synthesis of multicolor tunable ultrasmall LiYF4:Yb, Tm, Er/LiGdF4 core/shell upconversion nanophosphors with sub-10 nm size. Dyes Pigm. 2017, 139, 831-838.
[25]
Xu, Z.; Gu, W. B.; Feng, H.; Zhang, Z. J.; Zhao, J. T. Enhancement of structure stability and luminescence intensity of LiYF4:Ln3+ nanocrystals. J. Rare Earth. 2017, 35, 844-849.
[26]
Jin, L. M.; Wu, Y. K.; Wang, Y. J.; Liu, S.; Zhang, Y. Q.; Li, Z. Y.; Chen, X.; Zhang, W. F.; Xiao, S. M.; Song, Q. H. Mass-manufactural lanthanide-based ultraviolet B microlasers. Adv. Mater. 2019, 31, 1807079.
[27]
Fischer, S.; Swabeck, J. K.; Alivisatos, A. P. Controlled isotropic and anisotropic shell growth in β-NaLnF4 nanocrystals induced by precursor injection rate. J. Am. Chem. Soc. 2017, 139, 12325-12332.
[28]
Zhao, C. Z.; Kong, X. G.; Liu, X. M.; Tu, L. P.; Wu, F.; Zhang, Y. L.; Liu, K.; Zeng, Q. H.; Zhang, H. Li+ ion doping: An approach for improving the crystallinity and upconversion emissions of NaYF4:Yb3+, Tm3+ nanoparticles. Nanoscale 2013, 5, 8084-8089.
[29]
Cheng, T.; Marin, R.; Skripka, A.; Vetrone, F. Small and bright lithium-based upconverting nanoparticles. J. Am. Chem. Soc. 2018, 140, 12890-12899.
[30]
Zhu, Y. R.; Zhao, S. W.; Zhou, B.; Zhu, H.; Wang, Y. F. Enhancing upconversion luminescence of LiYF4:Yb, Er nanocrystals by Cd2+ doping and core-shell structure. J. Phys. Chem. C 2017, 121, 18909-18916.
[31]
Chen, G. Y.; Ohulchanskyy, T. Y.; Kachynski, A.; Ågren, H.; Prasad, P. N. Intense visible and near-infrared upconversion photoluminescence in colloidal LiYF4:Er3+ nanocrystals under excitation at 1490 nm. ACS Nano 2011, 5, 4981-4986.
[32]
Hoang, P. H.; Park, H.; Kim, D. P. Ultrafast and continuous synthesis of unaccommodating inorganic nanomaterials in droplet- and ionic liquid-assisted microfluidic system. J. Am. Chem. Soc. 2011, 133, 14765-14770.
[33]
Silvestrini, S.; Carofiglio, T.; Maggini, M. Shape-selective growth of silver nanoparticles under continuous flow photochemical conditions. Chem. Commun. 2013, 49, 84-86.
[34]
Nightingale, A. M.; Bannock, J. H.; Krishnadasan, S. H.; O’Mahony, F. T. F.; Haque, S. A.; Sloan, J.; Drury, C.; McIntyre, R.; deMello, J. C. Large-scale synthesis of nanocrystals in a multichannel droplet reactor. J. Mater. Chem. A 2013, 1, 4067-4076.
[35]
Chakrabarty, A.; Marre, S.; Landis, R. F.; Rotello, V. M.; Maitra, U.; Guerzo, A. D.; Aymonier, C. Continuous synthesis of high quality CdSe quantum dots in supercritical fluids. J Mater. Chem. C 2015, 3, 7561-7566.
[36]
Abdel-Latif, K.; Epps, R. W.; Kerr, C. B.; Papa, C. M.; Castellano, F. N.; Abolhasani, M. Facile room-temperature anion exchange reactions of inorganic perovskite quantum dots enabled by a modular microfluidic platform. Adv. Funct. Mater. 2019, 29, 1900712.
[37]
Frenz, L.; El Harrak, A.; Pauly, M.; Bégin-Colin, S.; Griffiths, A. D.; Baret, J. C. Droplet-based microreactors for the synthesis of magnetic iron oxide nanoparticles. Angew. Chem., Int. Ed. 2008, 47, 6817-6820.
[38]
Li, D. Y.; Guan, Z. C.; Zhang, W. H.; Zhou, X.; Zhang, W. Y.; Zhuang, Z. X.; Wang, X. R.; Yang, C. J. Synthesis of uniform-size hollow silica microspheres through interfacial polymerization in monodisperse water-in-oil droplets. ACS Appl. Mater Interfaces 2010, 2, 2711-2714.
[39]
Sui, J. S.; Yan, J. Y.; Liu, D.; Wang, K.; Luo, G. S. Continuous synthesis of nanocrystals via flow chemistry technology. Small 2020, 16, 1902828.
[40]
Shen, J. W.; Wang, Z. Q.; Liu, J. W.; Li, H. Nano-sized NaF inspired intrinsic solvothermal growth mechanism of rare-earth nanocrystals for facile control synthesis of high-quality and small-sized hexagonal NaYbF4:Er. J. Mater. Chem. C 2017, 5, 9579-9587.
[41]
Liu, D.; Jing, Y.; Wang, K.; Wang, Y. D.; Luo, G. S. Reaction study of α-phase NaYF4:Yb, Er generation via a tubular microreactor: Discovery of an efficient synthesis strategy. Nanoscale 2019, 11, 8363-8371.
[42]
Wang, K.; Zhang, H. M.; Shen, Y.; Adamo, A.; Jensen, K. F. Thermoformed fluoropolymer tubing for in-line mixing. React. Chem. Eng. 2018, 3, 707-713.
[43]
Zou, Q. L.; Huang, P.; Zheng, W.; You, W. W.; Li, R. F.; Tu, D. T.; Xu, J.; Chen, X. Y. Cooperative and non-cooperative sensitization upconversion in lanthanide-doped LiYbF4 nanoparticles. Nanoscale 2017, 9, 6521-6528.
[44]
Ostrowski, A. D.; Chan, E. M.; Gargas, D. J.; Katz, E. M.; Han, G.; Schuck, P. J.; Milliron, D. J.; Cohen, B. E. Controlled synthesis and single-particle imaging of bright, sub-10 nm lanthanide-doped upconverting nanocrystals. ACS Nano 2012, 6, 2686-2692.
[45]
Deng, X. S.; Yu, M. D.; Zhou, X.; Xia, Z. T.; Chen, X. H.; Huang, S. M. Highly bright and sensitive thermometric LiYF4:Yb, Er upconversion nanocrystals through Mg2+ tridoping. J. Mater. Sci. 2020, 31, 3415-3425.
[46]
Najmr, S.; Jishkariani, D.; Elbert, K. C.; Donnio, B.; Murray, C. B. A semi-combinatorial approach for investigating polycatenar ligand- controlled synthesis of rare-earth fluoride nanocrystals. Nanoscale 2017, 9, 8107-8112.
[47]
Ma, C. S.; Xu, X. X.; Wang, F.; Zhou, Z. G.; Wen, S. H.; Liu, D. M.; Fang, J. H.; Lang, C. I.; Jin, D. Y. Probing the interior crystal quality in the development of more efficient and smaller upconversion nanoparticles. J. Phys. Chem. Lett. 2016, 7, 3252-3258.
[48]
Shi, R. K.; Ling, X. C.; Li, X. N.; Zhang, L.; Lu, M.; Xie, X. J.; Huang, L.; Huang, W. Tuning hexagonal NaYbF4 nanocrystals down to sub-10 nm for enhanced photon upconversion. Nanoscale 2017, 9, 13739-13746.
[49]
Zhou, Z. Y.; Liang, F.; Qin, W.; Fei, W. Y. Coupled reaction and solvent extraction process to form Li2CO3: Mechanism and product characterization. AIChE J. 2014, 60, 282-288.
[50]
Li, L.; Sui, J. S.; Huang, R.; Xiang, W.; Qin, W. Dependence of electrochemical properties of spinel LiMn2O4 on Li2CO3 with micro-flaky, micro-flower and nanorod morphologies. RSC Adv. 2017, 7, 42289-42295.
[51]
Corning. Advanced-Flow™ Reactors (AFR) | Continuous Lab Flow Chemistry and Industrial Reactor Products and Technology. [Online]. https://www.corning.com/worldwide/en/innovation/corning-emerging-innovations/advanced-flow-reactors.html (accessed 1 May 2020).
[52]
Konda, V.; Rydfjord, J.; Sävmarker, J.; Larhed, M. Safe palladium- catalyzed cross-couplings with microwave heating using continuous- flow silicon carbide reactors. Org. Process Res. Dev. 2014, 18, 1413-1418.
[53]
Shandong JINDE new material Co., Ltd. SiC microreactor [Online]. http://www.ssic-icreactor.com/intro/7.html (accessed 1 May 2020).
[54]
Baek, J.; Allen, P. M.; Bawendi, M. G.; Jensen, K. F. Investigation of indium phosphide nanocrystal synthesis using a high-temperature and high-pressure continuous flow microreactor. Angew. Chem., Int. Ed. 2011, 50, 627-630.
[55]
Xie, L. S.; Harris, D. K.; Bawendi, M. G.; Jensen, K. F. Effect of trace water on the growth of indium phosphide quantum dots. Chem. Mater. 2015, 27, 5058-5063.
[56]
Lu, Y. Q.; Zhao, J. B.; Zhang, R.; Liu, Y. J.; Liu, D. M.; Goldys, E. M.; Yang, X. S.; Xi, P.; Sunna, A.; Lu, J. et al. Tunable lifetime multiplexing using luminescent nanocrystals. Nat. Photon. 2014, 8, 32-36.
[57]
Ma, Q. Q.; Wang, J.; Li, Z. H.; Wang, D.; Hu, X. X.; Xu, Y. S.; Yuan, Q. Near-infrared-light-mediated high-throughput information encryption based on the inkjet printing of upconversion nanoparticles. Inorg. Chem. Front. 2017, 4, 1166-1172.
Nano Research
Pages 2837-2846
Cite this article:
Sui J, Yan J, Wang K, et al. Efficient synthesis of lithium rare-earth tetrafluoride nanocrystals via a continuous flow method. Nano Research, 2020, 13(10): 2837-2846. https://doi.org/10.1007/s12274-020-2938-y
Topics:

797

Views

17

Crossref

N/A

Web of Science

18

Scopus

5

CSCD

Altmetrics

Received: 03 May 2020
Revised: 15 June 2020
Accepted: 16 June 2020
Published: 05 October 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return