AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (17.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

New approach for time-resolved and dynamic investigations on nanoparticles agglomeration

Neda Iranpour Anaraki1,2,3Amin Sadeghpour1,4Kamran Iranshahi4,5Claudio Toncelli4Urszula Cendrowska6Francesco Stellacci6Alex Dommann1,7Peter Wick2Antonia Neels1,3( )
Center for X-ray Analytics, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen 9014, Switzerland
Laboratory of Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen 9014, Switzerland
Department of Chemistry, University of Fribourg, Chemin du Musée, Fribourg 1700, Switzerland
Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen 9014, Switzerland
Department of Environmental Systems Science, Swiss Federal Institute of Technology, ETH-Zurich, Zurich 8092, Switzerland
Institute of Materials, EPFL, Lausanne 1015, Switzerland
Cellular and Biomedical Sciences, Faculty of Medicine, University of Bern, Bern 3012, Switzerland
Show Author Information

Graphical Abstract

Abstract

Nanoparticle (NP) colloidal stability plays a crucial role in biomedical application not only for human and environmental safety but also for NP efficiency and functionality. NP agglomeration is considered as a possible process in monodispersed NP colloidal solutions, which drastically affects colloidal stability. This process is triggered by changes in the physicochemical properties of the surrounding media, such as ionic strength (IS), pH value, or presence of biomolecules. Despite different available characterization methods for nanoparticles (NPs), there is a lack of information about the underlying mechanisms at the early stage of dynamic behaviors, namely changing in NP size distribution and structure while placing them from a stable colloidal solution to a new media like biological fluids. In this study, an advanced in situ approach is presented that combines small angle X-ray scattering (SAXS) and microfluidics, allowing label-free, direct, time-resolved, and dynamic observations of the early stage of NP interaction/agglomeration initiated by environmental changes. It is shown for silica NPs that the presence of protein in the media enormously accelerates the NP agglomeration process compared to respective changes in IS and pH. High IS results in a staring agglomeration process after 40 min, though, in case of protein presence in media, this time decreased enormously to 48 s. These time scales show that this method is sensitive and precise in depicting the dynamics of fast and slow NP interactions in colloidal conditions and therefore supports understanding the colloidal stability of NPs in various media concluding in safe and efficient NP designing for various applications.

References

[1]
Pai, A. B. Complexity of intravenous iron nanoparticle formulations: Implications for bioequivalence evaluation. Ann. New York Acad. Sci. 2017, 1407, 17-25.
[2]
Moore, T. L.; Rodriguez-Lorenzo, L.; Hirsch, V.; Balog, S.; Urban, D.; Jud, C.; Rothen-Rutishauser, B.; Lattuada, M.; Petri-Fink, A. Nanoparticle colloidal stability in cell culture media and impact on cellular interactions. Chem. Soc. Rev. 2015, 44, 6287-6305.
[3]
Wu, L. B.; Zhang, J.; Watanabe, W. Physical and chemical stability of drug nanoparticles. Adv. Drug Deliv. Rev. 2011, 63, 456-469.
[4]
Bharti, B.; Meissner, J.; Klapp, S. H. L.; Findenegg, G. H. Bridging interactions of proteins with silica nanoparticles: The influence of pH, ionic strength and protein concentration. Soft Matter 2014, 10, 718-728.
[5]
Zook, J. M.; MacCuspie, R. I.; Locascio, L. E.; Halter, M. D.; Elliott, J. T. Stable nanoparticle aggregates/agglomerates of different sizes and the effect of their size on hemolytic cytotoxicity. Nanotoxicology 2011, 5, 517-530.
[6]
Wills, J. W.; Summers, H. D.; Hondow, N.; Sooresh, A.; Meissner, K. E.; White, P. A.; Rees, P.; Brown, A.; Doak, S. H. Characterizing nanoparticles in biological matrices: Tipping points in agglomeration state and cellular delivery in vitro. ACS Nano 2017, 11, 11986-12000.
[7]
Bruinink, A.; Wang, J.; Wick, P. Effect of particle agglomeration in nanotoxicology. Arch. Toxicol. 2015, 89, 659-675.
[8]
Nel, A. E.; Mädler, L.; Velegol, D.; Xia, T.; Hoek, E. M. V.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 2009, 8, 543-557.
[9]
Hoshyar, N.; Gray, S.; Han, H. B.; Bao, G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine 2016, 11, 673-692.
[10]
Saptarshi, S. R.; Duschl, A.; Lopata, A. L. Interaction of nanoparticles with proteins: Relation to bio-reactivity of the nanoparticle. J. Nanobiotechnol. 2013, 11, 26.
[11]
Stebounova, L. V.; Guio, E.; Grassian, V. H. Silver nanoparticles in simulated biological media: A study of aggregation, sedimentation, and dissolution. J. Nanopart. Res. 2011, 13, 233-244.
[12]
Hondow, N.; Brydson, R.; Wang, P. Y.; Holton, M. D.; Brown, M. R.; Rees, P.; Summers, H. D.; Brown, A. Quantitative characterization of nanoparticle agglomeration within biological media. J. Nanopart. Res. 2012, 14, 977.
[13]
Orts-Gil, G.; Natte, K.; Thiermann, R.; Girod, M.; Rades, S.; Kalbe, H.; Thünemann, A. F.; Maskos, M.; Österle, W. On the role of surface composition and curvature on biointerface formation and colloidal stability of nanoparticles in a protein-rich model system. Colloids Surf. B: Biointerfaces 2013, 108, 110-119.
[14]
Spinozzi, F.; Ceccone, G.; Moretti, P.; Campanella, G.; Ferrero, C.; Combet, S.; Ojea-Jimenez, I.; Ghigna, P. Structural and thermodynamic properties of nanoparticle-protein complexes: A combined SAXS and SANS study. Langmuir 2017, 33, 2248-2256.
[15]
Kumar, A.; Dixit, C. K. 3 - Methods for characterization of nanoparticles. In Advances in Nanomedicine for the Delivery of Therapeutic Nucleic Acids. Nimesh, S.; Chandra, R.; Gupta, N., Eds.; Woodhead Publishing: Amsterdam, 2017; pp 43-58.
[16]
Titus, D.; James Jebaseelan Samuel, E.; Roopan, S. M. Chapter 12 - Nanoparticle characterization techniques. In Green Synthesis, Characterization and Applications of Nanoparticles: A volume in Micro and Nano Technologies. Shukla, A. K.; Iravani, S., Eds.; Elsevier: Amsterdam, 2019; pp 303-319.
[17]
Mourdikoudis, S.; Pallares, R. M.; Thanh, N. T. K. Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties. Nanoscale 2018, 10, 12871-12934.
[18]
Li, T.; Senesi, A. J.; Lee, B. Small angle X-ray scattering for nanoparticle research. Chem. Rev. 2016, 116, 11128-11180.
[19]
Sharma, R. Experimental set up for in situ transmission electron microscopy observations of chemical processes. Micron 2012, 43, 1147-1155.
[20]
Jeelani, P. G.; Mulay, P.; Venkat, R.; Ramalingam, C. Multifaceted application of silica nanoparticles. A review. Silicon 2020, 12, 1337-1354.
[21]
Pauw, B. R. Corrigendum: Everything SAXS: Small-angle scattering pattern collection and correction (2013 J. Phys.: Condens. Matter 25 383201). J. Phys.: Condens. Matter 2014, 26, 239501.
[22]
Zackrisson, A. S.; Pedersen, J. S.; Bergenholtz, J. A small-angle X-ray scattering study of aggregation and gelation of colloidal silica. Colloids Surf. A: Physicochem. Eng. Aspects 2008, 315, 23-30.
[23]
Partyka-Jankowska, E.; Leroch, S.; Akbarzadeh, J.; Pabisch, S.; Wendland, M.; Peterlik, H. SAXS studies on silica nanoparticle aggregation in a humid atmosphere. J. Nanopart. Res. 2014, 16, 2642.
[24]
Silva, B. F. B. SAXS on a chip: From dynamics of phase transitions to alignment phenomena at interfaces studied with microfluidic devices. Phys. Chem. Chem. Phys. 2017, 19, 23690-23703.
[25]
Lutz-Bueno, V.; Zhao, J. G.; Mezzenga, R.; Pfohl, T.; Fischer, P.; Liebi, M. Scanning-SAXS of microfluidic flows: Nanostructural mapping of soft matter. Lab Chip 2016, 16, 4028-4035.
[26]
Watkin, S. A. J.; Ryan, T. M.; Miller, A. G.; Nock, V. M.; Pearce, F. G.; Dobson, R. C. J. Microfluidics for small-angle X-ray scattering. In X-ray Scattering. Ares, A. E. Ed.; InTech: Rijeka, 2017, 89-104.
[27]
Ghazal, A.; Gontsarik, M.; Kutter, J. P.; Lafleur, J. P.; Ahmadvand, D.; Labrador, A.; Salentinig, S.; Yaghmur, A. Microfluidic platform for the continuous production and characterization of multilamellar vesicles: A synchrotron Small-Angle X-ray Scattering (SAXS) study. J. Phys. Chem. Lett. 2017, 8, 73-79.
[28]
Poulos, A. S.; Nania, M.; Lapham, P.; Miller, R. M.; Smith, A. J.; Tantawy, H.; Caragay, J.; Gummel, J.; Ces, O.; Robles, E. S. J. et al. Microfluidic SAXS study of lamellar and multilamellar vesicle phases of linear sodium alkylbenzenesulfonate surfactant with intrinsic isomeric distribution. Langmuir 2016, 32, 5852-5861.
[29]
Khvostichenko, D. S.; Kondrashkina, E.; Perry, S. L.; Pawate, A. S.; Brister, K.; Kenis, P. J. A. An X-ray transparent microfluidic platform for screening of the phase behavior of lipidic mesophases. Analyst 2013, 138, 5384-5395.
[30]
Silva, B. F. B.; Zepeda-Rosales, M.; Venkateswaran, N.; Fletcher, B. J.; Carter, L. G.; Matsui, T.; Weiss, T. M.; Han, J.; Li, Y. L.; Olsson, U. et al. Nematic director reorientation at solid and liquid interfaces under flow: SAXS studies in a microfluidic device. Langmuir 2015, 31, 4361-4371.
[31]
Lattman, E. E.; Grant, T. D.; Snell, E. H. SAXS Instrumentation. In Biological Small Angle Scattering. Oxford University Press: Oxford, 2018, 134-157.
[32]
Brandenberger, C.; Mühlfeld, C.; Ali, Z.; Lenz, A. G.; Schmid, O.; Parak, W. J.; Gehr, P.; Rothen-Rutishauser, B. Quantitative evaluation of cellular uptake and trafficking of plain and polyethylene glycol- coated gold nanoparticles. Small 2010, 6, 1669-1678.
[33]
Wang, R. E.; Tian, L.; Chang, Y. H. A homogeneous fluorescent sensor for human serum albumin. J. Pharm. Biomed. Anal. 2012, 63, 165-169.
[34]
Glatter, O. A new method for the evaluation of small-angle scattering data. J. Appl. Cryst. 1977, 10, 415-421.
[35]
Fritz, G.; Bergmann, A.; Glatter, O. Evaluation of small-angle scattering data of charged particles using the generalized indirect Fourier transformation technique. J. Chem. Phys. 2000, 113, 9733-9740.
[36]
Kimoto, S.; Dick, W. D.; Hunt, B.; Szymanski, W. W.; McMurry, P. H.; Roberts, D. L.; Pui, D. Y. H. Characterization of nanosized silica size standards. Aerosol Sci. Technol. 2017, 51, 936-945.
[37]
Fan, L. X.; Degen, M.; Bendle, S.; Grupido, N.; Ilavsky, J. The absolute calibration of a small-angle scattering instrument with a laboratory X-ray source. J. Phys.: Conf. Ser. 2010, 247, 012005.
[38]
Jacques, D. A.; Trewhella, J. Small-angle scattering for structural biology-Expanding the frontier while avoiding the pitfalls. Protein Sci. 2010, 19, 642-657.
[39]
Mylonas, E.; Svergun, D. I. Accuracy of molecular mass determination of proteins in solution by small-angle X-ray scattering. J. Appl. Cryst. 2007, 40, s245-s249.
[40]
Primavera, R.; Barbacane, R. C.; Congia, M.; Locatelli, M.; Celia, C. Laser diffraction and light scattering techniques for the analysis of food matrices. Adv. Food Saf. Health 2014, 6, 40-60.
[41]
Glatter, O. Chapter 2 - General theorems and special cases. In Scattering Methods and their Application in Colloid and Interface Science. Glatter, O., Ed.; Elsevier: Amsterdam, 2018; pp 19-32.
[42]
Glatter, O. Chapter 1 - Interference, rayleigh-debye-gans theory. In Scattering Methods and their Application in Colloid and Interface Science. Glatter, O., Ed.; Elsevier: Amsterdam, 2018; pp 1-18.
[43]
Lebovka, N. I. Aggregation of charged colloidal particles. In Polyelectrolyte Complexes in the Dispersed and Solid State I: Principles and Theory. Müller, M., Ed.; Springer: Berlin, Heidelberg, 2012; pp 57-96.
[44]
Israelachvili, J. N. Intermolecular and Surface Forces; 3rd ed. Academic Press: Boston, 2011.
[45]
Yang, S. A.; Choi, S.; Jeon, S. M.; Yu, J. H. Silica nanoparticle stability in biological media revisited. Sci. Rep. 2018, 8, 185.
[46]
Diedrich, T.; Dybowska, A.; Schott, J.; Valsami-Jones, E.; Oelkers, E. H. The dissolution rates of SiO2 nanoparticles as a function of particle size. Environ. Sci. Technol. 2012, 46, 4909-4915.
[47]
Balog, S.; Rodriguez-Lorenzo, L.; Monnier, C. A.; Obiols-Rabasa, M.; Rothen-Rutishauser, B.; Schurtenberger, P.; Petri-Fink, A. Characterizing nanoparticles in complex biological media and physiological fluids with depolarized dynamic light scattering. Nanoscale 2015, 7, 5991-5997.
Nano Research
Pages 2847-2856
Cite this article:
Anaraki NI, Sadeghpour A, Iranshahi K, et al. New approach for time-resolved and dynamic investigations on nanoparticles agglomeration. Nano Research, 2020, 13(10): 2847-2856. https://doi.org/10.1007/s12274-020-2940-4
Topics:

1108

Views

39

Downloads

27

Crossref

N/A

Web of Science

27

Scopus

0

CSCD

Altmetrics

Received: 13 April 2020
Revised: 16 June 2020
Accepted: 17 June 2020
Published: 05 October 2020
© The Author(s) 2020

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return