AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Broadband electroluminescence from reverse breakdown in individual suspended carbon nanotube pn-junctions

Bo Wang1Sisi Yang1Yu Wang3Younghee Kim4Ragib Ahsan2Rehan Kapadia2Stephen K. Doorn4Han Htoon4Stephen B. Cronin1,2( )
Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, USA
Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089, USA
Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
Show Author Information

Graphical Abstract

Abstract

There are various mechanisms of light emission in carbon nanotubes (CNTs), which give rise to a wide range of spectral emission characteristics that provide important information regarding the underlying physical processes that lead to photon emission. Here, we report spectra obtained from individual suspended CNT dual-gate field effect transistor (FET) devices under different gate and bias conditions. By applying opposite voltages to the gate electrodes (i.e., Vg1 = -Vg2), we are able to create a pn-junction within the suspended region of the CNT. Under forward bias conditions, the spectra exhibit a peak corresponding to E11 exciton emission via thermal (i.e., blackbody) emission occurring at electrical powers around 8 µW, which corresponds to a power density of approximately 0.5 MW/cm2. On the other hand, the spectra observed under reverse bias correspond to impact ionization and avalanche emission, which occurs at electrical powers of ~ 10 nW and exhibits a featureless flat spectrum extending from 1,600 nm to shorter wavelengths up to 600 nm. Here, the hot electrons generated by the high electric fields (~ 0.5 MV/cm) are able to produce high energy photons far above the E11 (ground state) energy. It is somewhat surprising that these devices do not exhibit light emission by the annihilation of electrons and holes under forward bias, as in a light emitting diode (LED). Possible reasons for this are discussed, including Auger recombination.

Electronic Supplementary Material

Download File(s)
12274_2020_2941_MOESM1_ESM.pdf (1.4 MB)

References

[1]
Ghosh, S.; Bachilo, S. M.; Simonette, R. A.; Beckingham, K. M.; Weisman, R. B. Oxygen doping modifies near-infrared band gaps in fluorescent single-walled carbon nanotubes. Science 2010, 330, 1656-1659.
[2]
Miyauchi, Y.; Iwamura, M.; Mouri, S.; Kawazoe, T.; Ohtsu, M.; Matsuda, K. Brightening of excitons in carbon nanotubes on dimensionality modification. Nat. Photonics 2013, 7, 715-719.
[3]
Ma, X. D.; Adamska, L.; Yamaguchi, H.; Yalcin, S. E.; Tretiak, S.; Doorn, S. K.; Htoon, H. Electronic structure and chemical nature of oxygen dopant states in carbon nanotubes. ACS Nano 2014, 8, 10782-10789.
[4]
Ma, X. D.; Hartmann, N. F.; Baldwin, J. K. S.; Doorn, S. K.; Htoon, H. Room-temperature single-photon generation from solitary dopants of carbon nanotubes. Nat. Nanotechnol. 2015, 10, 671-675.
[5]
Ma, X. D.; Baldwin, J. K. S.; Hartmann, N. F.; Doorn, S. K.; Htoon, H. Solid-state approach for fabrication of photostable, oxygen-doped carbon nanotubes. Adv. Fuct. Mater. 2015, 25, 6157-6164.
[6]
Ma, X. D.; James, A. R.; Hartmann, N. F.; Baldwin, J. K.; Dominguez, J.; Sinclair, M. B.; Luk, T. S.; Wolf, O.; Liu, S.; Doorn, S. K. et al. Solitary oxygen dopant emission from carbon nanotubes modified by dielectric metasurfaces. ACS Nano 2017, 11, 6431-6439.
[7]
Matsunaga, R.; Matsuda, K.; Kanemitsu, Y. Observation of charged excitons in hole-doped carbon nanotubes using photoluminescence and absorption spectroscopy. Phys. Rev. Lett. 2011, 106, 037404.
[8]
Yuma, B.; Berciaud, S.; Besbas, J.; Shaver, J.; Santos, S.; Ghosh, S.; Weisman, R. B.; Cognet, L.; Gallart, M.; Ziegler, M. et al. Biexciton, single carrier, and trion generation dynamics in single-walled carbon nanotubes. Phys. Rev. B 2013, 87, 205412.
[9]
Högele, A.; Galland, C.; Winger, M.; Imamoğlu, A. Photon antibunching in the photoluminescence spectra of a single carbon nanotube. Phys. Rev. Lett. 2008, 100, 217401.
[10]
He, X. W.; Hartmann, N. F.; Ma, X. D.; Kim, Y.; Ihly, R.; Blackburn, J. L.; Gao, W. L.; Kono, J.; Yomogida, Y.; Hirano, A. et al. Tunable room-temperature single-photon emission at telecom wavelengths from sp3 defects in carbon nanotubes. Nat. Photonics 2017, 11, 577-582.
[11]
Ju, S. Y.; Kopcha, W. P.; Papadimitrakopoulos, F. Brightly fluorescent single-walled carbon nanotubes via an oxygen-excluding surfactant organization. Science 2009, 323, 1319-1323.
[12]
Ishii, A.; Uda, T.; Kato, Y. K. Room-temperature single-photon emission from micrometer-long air-suspended carbon nanotubes. Phys. Rev. Appl. 2017, 8, 054039.
[13]
Hofmann, M. S.; Glückert, J. T.; Noé, J.; Bourjau, C.; Dehmel, R.; Högele, A. Bright, long-lived and coherent excitons in carbon nanotube quantum dots. Nat. Nanotechnol. 2013, 8, 502-505.
[14]
Walden-Newman, W.; Sarpkaya, I.; Strauf, S. Quantum light signatures and nanosecond spectral diffusion from cavity-embedded carbon nanotubes. Nano Lett. 2012, 12, 1934-1941.
[15]
Mueller, T.; Kinoshita, M.; Steiner, M.; Perebeinos, V.; Bol, A. A.; Farmer, D. B.; Avouris, P. Efficient narrow-band light emission from a single carbon nanotube p-n diode. Nat. Nanotechnol. 2010, 5, 27-31.
[16]
Misewich, J. A.; Martel, R.; Avouris; Tsang, J. C.; Heinze, S.; Tersoff, J. Electrically induced optical emission from a carbon nanotube FET. Science 2003, 300, 783-786.
[17]
Freitag, M.; Perebeinos, V.; Chen, J.; Stein, A.; Tsang, J. C.; Misewich, J. A.; Martel, R.; Avouris, P. Hot carrier electroluminescence from a single carbon nanotube. Nano Lett. 2004, 4, 1063-1066.
[18]
Chen, J.; Perebeinos, V.; Freitag, M.; Tsang, J.; Fu, Q.; Liu, J.; Avouris, P. Bright infrared emission from electrically induced excitons in carbon nanotubes. Science 2005, 310, 1171-1174.
[19]
Pfeiffer, M. H. P.; Stürzl, N.; Marquardt, C. W.; Engel, M.; Dehm, S.; Hennrich, F.; Kappes, M. M.; Lemmer, U.; Krupke, R. Electroluminescence from chirality-sorted (9,7)-semiconducting carbon nanotube devices. Opt. Express 2011, 19, A1184-A1189.
[20]
Liu, Z. W.; Bushmaker, A.; Aykol, M.; Cronin, S. B. Thermal emission spectra from individual suspended carbon nanotubes. ACS Nano 2011, 5, 4634-4640.
[21]
Wang, B.; Rezaeifar, F.; Chen, J. H.; Yang, S. S.; Kapadia, R.; Cronin, S. B. Avalanche photoemission in suspended carbon nanotubes: Light without Heat. ACS Photonics 2017, 4, 2706-2710.
[22]
Wang, B.; Yang, S. S.; Shen, L.; Cronin, S. B. Ultra-low power light emission via avalanche and sub-avalanche breakdown in suspended carbon nanotubes. ACS Photonics 2018, 5, 4432-4436.
[23]
Bushmaker, A. W.; Deshpande, V. V.; Bockrath, M. W.; Cronin, S. B. Direct observation of mode selective electron-phonon coupling in suspended carbon nanotubes. Nano Lett. 2007, 7, 3618-3622.
[24]
Hsu, I. K.; Pettes, M. T.; Aykol, M.; Shi, L.; Cronin, S. B. The effect of gas environment on electrical heating in suspended carbon nanotubes. J. Appl. Phys. 2010, 108, 084307.
[25]
Amer, M.; Bushmaker, A.; Cronin, S. Anomalous kink behavior in the current-voltage characteristics of suspended carbon nanotubes. Nano Res. 2012, 5, 172-180.
[26]
Bushmaker, A. W.; Deshpande, V. V.; Hsieh, S.; Bockrath, M. W.; Cronin, S. B. Direct observation of born-oppenheimer approximation breakdown in carbon nanotubes. Nano Lett. 2009, 9, 607-611.
[27]
Bushmaker, A. W.; Deshpande, V. V.; Hsieh, S.; Bockrath, M. W.; Cronin, S. B. Large modulations in the intensity of Raman-scattered light from pristine carbon nanotubes. Phys. Rev. Lett. 2009, 103, 067401.
[28]
Chang, S. W.; Theiss, J.; Hazra, J.; Aykol, M.; Kapadia, R.; Cronin, S. B. Photocurrent spectroscopy of exciton and free particle optical transitions in suspended carbon nanotube pn-junctions. Appl. Phys. Lett. 2015, 107, 053107.
[29]
Deshpande, V. V.; Chandra, B.; Caldwell, R.; Novikov, D. S.; Hone, J.; Bockrath, M. Mott insulating state in ultraclean carbon nanotubes. Science 2009, 323, 106-110.
[30]
Wang, B.; Yang, S. S.; Wang, Y.; Ahsan, R.; He, X. W.; Kim, Y.; Htoon, H.; Kapadia, R.; John, D. D.; Thibeault, B. et al. Auger suppression of incandescence in individual suspended carbon nanotube pn-junctions. ACS Appl. Mater. Interfaces 2020, 12, 11907-11912.
[31]
Chang, S. W.; Bergemann, K.; Dhall, R.; Zimmerman, J.; Forrest, S.; Cronin, S. B. Nonideal diode behavior and bandgap renormalization in carbon nanotube p-n junctions. IEEE Trans. Nanotechnol. 2014, 13, 41-45.
[32]
Freitag, M.; Steiner, M.; Naumov, A.; Small, J. P.; Bol, A. A.; Perebeinos, V.; Avouris, P. Carbon nanotube photo- and electroluminescence in longitudinal electric fields. ACS Nano 2009, 3, 3744-3748.
[33]
Steiner, M.; Freitag, M.; Perebeinos, V.; Naumov, A.; Small, J. P.; Bol, A. A.; Avouris, P. Gate-variable light absorption and emission in a semiconducting carbon nanotube. Nano Lett. 2009, 9, 3477-3481.
[34]
Yasukochi, S.; Murai, T.; Moritsubo, S.; Shimada, T.; Chiashi, S.; Maruyama, S.; Kato, Y. K. Gate-induced blueshift and quenching of photoluminescence in suspended single-walled carbon nanotubes. Phys. Rev. B 2011, 84, 121409.
[35]
Yoshida, M.; Popert, A.; Kato, Y. K. Gate-voltage induced trions in suspended carbon nanotubes. Phys. Rev. B 2016, 93, 041402.
[36]
Chynoweth, A. G.; McKay, K. G. Photon emission from avalanche breakdown in silicon. Phys. Rev. 1956, 102, 369-376.
[37]
Van Drieënhuizen, B. P.; Wolffenbuttel, R. F. Optocoupler based on the avalanche light emission in silicon. Sens. Actuators A: Phys. 1992, 31, 229-240.
Nano Research
Pages 2857-2861
Cite this article:
Wang B, Yang S, Wang Y, et al. Broadband electroluminescence from reverse breakdown in individual suspended carbon nanotube pn-junctions. Nano Research, 2020, 13(10): 2857-2861. https://doi.org/10.1007/s12274-020-2941-3
Topics:

666

Views

1

Crossref

N/A

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 14 November 2019
Revised: 06 June 2020
Accepted: 19 June 2020
Published: 05 October 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return