AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

High N-doped hierarchical porous carbon networks with expanded interlayers for efficient sodium storage

Dongqin Su1Man Huang1Junhao Zhang1( )Xingmei Guo1Jiale Chen1Yanchun Xue1Aihua Yuan1( )Qinghong Kong2
School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
Show Author Information

Graphical Abstract

Abstract

Sodium-ion batteries (SIBs) have been attracting considerable attention as a promising candidate for large-scale energy storage because of the abundance and low-cost of sodium resources. However, lack of appropriate anode materials impedes further applications. Herein, a novel self-template strategy is designed to synthesize uniform flowerlike N-doped hierarchical porous carbon networks (NHPCN) with high content of N (15.31 at.%) assembled by ultrathin nanosheets via a self-synthesized single precursor and subsequent thermal annealing. Relying on the synergetic coordination of benzimidazole and 2-methylimidazole with metal ions to produce a flowerlike network, a self-formed single precursor can be harvested. Due to the structural and compositional advantages, including the high N doping, the expanded interlayer spacing, the ultrathin two-dimensional nano-sized subunits, and the three-dimensional porous network structure, these unique NHPCN flowers deliver ultrahigh reversible capacities of 453.7 mAh·g-1 at 0.1 A·g-1 and 242.5 mAh·g-1 at 1 A·g-1 for 2,500 cycles with exceptional rate capability of 5 A·g-1 with reversible capacities of 201.2 mAh·g-1. The greatly improved sodium storage performance of NHPCN confirms the importance of reasonable engineering and synthesis of hierarchical carbon with unique structures.

Electronic Supplementary Material

Download File(s)
12274_2020_2944_MOESM1_ESM.pdf (4.4 MB)

References

[1]
Jin, A. H.; Yu, S. H.; Park, J. H.; Kang, S. M.; Kim, M. J.; Jeon, T. Y.; Mun, J.; Sung, Y. E. Iron sulfides with dopamine-derived carbon coating as superior performance anodes for sodium-ion batteries. Nano Res. 2019, 12, 2609-2613.
[2]
Huang, M.; Mi, K.; Zhang, J. H.; Liu, H. L.; Yu, T. T.; Kong, Q. H.; Xiong, S. L. MOF-derived bi-metal embedded N-doped carbon polyhedral nanocages with enhanced lithium storage. J. Mater. Chem. A 2017, 5, 266-274.
[3]
Zhou, Y. L.; Yan, D.; Xu, H. Y.; Feng, J. K.; Jiang, X. L.; Yue, J.; Yang, J.; Qian, Y. T. Hollow nanospheres of mesoporous Co9S8 as a high-capacity and long-life anode for advanced lithium ion batteries. Nano Energy 2015, 12, 528-537.
[4]
Zhou, Y. L.; Tian, J.; Xu, H. Y.; Yang, J.; Qian, Y. T. VS4 nanoparticles rooted by a-C coated MWCNTs as an advanced anode material in lithium ion batteries. Energy Stor. Mater., 2017, 6, 149-156.
[5]
Xia, Z.; Sun, H.; He, X.; Sun, Z. T.; Lu, C.; Li, J.; Peng, Y.; Dou, S. X.; Sun, J. Y.; Liu, Z. F. In situ construction of CoSe2@vertical-oriented graphene arrays as self-supporting electrodes for sodium-ion capacitors and electrocatalytic oxygen evolution. Nano Energy 2019, 60, 385-393.
[6]
Lu, C.; Li, Z. Z.; Yu, L. H.; Zhang, L.; Xia, Z.; Jiang, T.; Yin, W. J.; Dou, S. X.; Liu, Z. F.; Sun, J. Y. Nanostructured Bi2S3 encapsulated within three-dimensional N-doped graphene as active and flexible anodes for sodium-ion batteries. Nano Res. 2018, 11, 4614-4626.
[7]
Yin, H.; Li, Q. W.; Cao, M. L.; Zhang, W.; Zhao, H.; Li, C.; Huo, K. F.; Zhu, M. Q. Nanosized-bismuth-embedded 1D carbon nanofibers as high-performance anodes for lithium-ion and sodium-ion batteries. Nano. Res. 2017, 10, 2156-2167.
[8]
Liu, T. F.; Zhang, Y. P.; Jiang, Z. G.; Zeng, X. Q.; Ji. J. P.; Li, Z. H.; Gao, X. H.; Sun, M. H.; Lin, Z.; Ling, M. et al. Exploring competitive features of stationary sodium ion batteries for electrochemical energy storage. Energy Environ. Sci. 2019, 12, 1512-1533.
[9]
Xue, Y. L.; Li, X. Y.; Wang, J. G.; Yu, Q.; Qian, X.; Chen, L. Z.; Dan, Y. Y. Fe-doped CoP flower-like microstructure on carbon membrane as integrated electrode with enhanced sodium ion storage. Chem.—Eur. J. 2020, 26, 1298-1305.
[10]
Ai, H. Q.; Liu, X. B.; Yang, B.; Zhang, X. M.; Zhao, M. W. Two- dimensional metal-organic half-metallic antiferromagnet: CoFePz. J. Phys. Chem. C 2018, 122, 1846-1851.
[11]
Shen, K.; Chen, X. D.; Chen, J. Y.; Li, Y. W. Development of MOF- derived carbon-based nanomaterials for efficient catalysis. ACS Catal. 2016, 6, 5887-5903.
[12]
Tang, H. L.; Cai, S. C.; Xie, S. L.; Wang, Z. B.; Tong, Y. X.; Pan, M.; Lu, X. H. Metal-organic-framework-derived dual metal- and nitrogen-doped carbon as efficient and robust oxygen reduction reaction catalysts for microbial fuel cells. Adv. Sci. 2016, 3, 1500265.
[13]
Cao, X. H.; Tan, C. L.; Sindoro, M.; Zhang, H. Hybrid micro-/nano- structures derived from metal-organic frameworks: Preparation and applications in energy storage and conversion. Chem. Soc. Rev. 2017, 46, 2660-2677.
[14]
Kaneti, Y. V.; Tang, J.; Salunkhe, R. R.; Jiang, X. C.; Yu, A. B.; Wu, K. C. W.; Yamauchi, Y. Nanoarchitectured design of porous materials and nanocomposites from metal-organic frameworks. Adv. Mater. 2017, 29, 1604898.
[15]
He, Y. Z.; Han, X. J.; Du, Y. C.; Song, B.; Zhang, B.; Zhang, W.; Xu, P. Conjugated polymer-mediated synthesis of sulfur- and nitrogen- doped carbon nanotubes as efficient anode materials for sodium ion batteries. Nano Res. 2018, 11, 2573-2585.
[16]
Zhang, G. H.; Hou, S. C.; Zhang, H.; Zeng, W.; Yan, F. L.; Li, C. C.; Duan, H. G. High-performance and ultra-stable lithium-ion batteries based on MOF-derived ZnO@ZnO quantum dots/C core-shell nanorod arrays on a carbon cloth anode. Adv. Mater. 2015, 27, 2400-2405.
[17]
Zhou, Y. L.; Zhang, M.; Wang, Q.; Yang, J.; Luo, X. Y.; Li, Y. L.; Du, R.; Yan, X. S.; Sun, X. Q.; Dong, C. F. et al. Pseudocapacitance boosted N-doped carbon coated Fe7S8 nanoaggregates as promising anode materials for lithium and sodium storage. Nano Res. 2020, 13, 691-700.
[18]
Zhao, X. J.; Luo, D.; Wang, Y.; Liu, Z. H. Reduced graphene oxide- supported CoP nanocrystals confined in porous nitrogen-doped carbon nanowire for highly enhanced lithium/sodium storage and hydrogen evolution reaction. Nano Res. 2019, 12, 2872-2880.
[19]
Zhang, J. H.; Huang, M.; Xi, B. J.; Mi, K.; Yuan, A. H.; Xiong, S. L. Systematic study of effect on enhancing specific capacity and electrochemical behaviors of lithium-sulfur batteries. Adv. Energy Mater. 2018, 8, 1701330.
[20]
Kong, L. J.; Zhu, J.; Shuang, W.; Bu, X. H. Nitrogen-doped wrinkled carbon foils derived from MOF nanosheets for superior sodium storage. Adv. Energy Mater. 2018, 8, 1801515.
[21]
Lu, C.; Li, Z. Z.; Xia, Z., Ci, H. N.; Cai, J. S.; Song, Y. Z.; Yu, L. H.; Yin, W. J.; Dou, S. X.; Sun, J. Y.; Liu, Z. F. Confining MOF-derived SnSe nanoplatelets in nitrogen-doped graphene cages via direct CVD for durable sodium ion storage. Nano Res. 2019, 12, 3051-3058.
[22]
Zhang, D. W.; Wang, G.; Xu, L.; Lian, J. B.; Bao, J.; Zhao, Y.; Qiu, J. X.; Li, H. M. Defect-rich N-doped porous carbon derived from soybean for high rate lithium-ion batteries. Appl. Surf. Sci. 2018, 451, 298-305.
[23]
Gao, L. B.; Zhang, H. T.; Surjadi, J. U.; Li, P. F.; Han, Y.; Sun, D.; Lu, Y. Mechanically stable ternary heterogeneous electrodes for energy storage and conversion. Nanoscale 2018, 10, 2613-2622.
[24]
Maximoff, S. N.; Smit, B. Redox chemistry and metal-insulator transitions intertwined in a Nano-porous material. Nat. Commun. 2014, 5, 4032.
[25]
Han, S.; Kim, H.; Kim, J.; Jung, Y. Modulating the magnetic behavior of Fe(II)-MOF-74 by the high electron affinity of the guest molecule. Phys. Chem. Chem. Phys. 2015, 17, 16977-16982.
[26]
Thonhauser, T.; Zuluaga, S.; Arter, C. A.; Berland, K.; Schröder, E.; Hyldgaard, P. Spin signature of nonlocal correlation binding in metal-organic frameworks. Phys. Rev. Lett. 2015, 115, 136402.
[27]
Chen, Y. Z.; Wang, C. M.; Wu, Z. Y.; Xiong, Y. J.; Xu, Q.; Yu, S. H.; Jiang, H. L. From bimetallic metal-organic framework to porous carbon: High surface area and multicomponent active dopants for excellent electrocatalysis. Adv. Mater. 2015, 27, 5010-5016.
[28]
Gadipelli, S.; Guo, Z. X. Tuning of ZIF-derived carbon with high activity, nitrogen functionality, and yield—A case for superior CO2 capture. ChemSusChem 2015, 8, 2123-2132.
[29]
Guo, C. Y.; Zhang, Y. H.; Guo, Y.; Zhang, L. G.; Wang, J. D. A general and efficient approach for tuning the crystal morphology of classical MOFs. Chem. Commun. 2018, 54, 252-255.
[30]
Li, X. Z.; Fang, Y. Y.; Lin, X. Q.; Tian, M.; An, X. C.; Fu, Y.; Li, R.; Jin, J.; Ma, J. T. MOF derived Co3O4 nanoparticles embedded in N-doped mesoporous carbon layer/MWCNT hybrids: Extraordinary bi-functional electrocatalysts for OER and ORR. J. Mater. Chem. A 2015, 3, 17392-17402.
[31]
Kang, B. K.; Im, S. Y.; Lee, J.; Kwag, S. H.; Kwon, S. B.; Tiruneh, S.; Kim, M. J.; Kim, J. H.; Yang, W. S.; Lim, B. et al. In-situ formation of MOF derived mesoporous Co3N/amorphous N-doped carbon nanocubes as an efficient electrocatalytic oxygen evolution reaction. Nano Res. 2019, 12, 1605-1611.
[32]
MacFarlane, D. R.; Forsyth, M.; Howlett, P. C.; Kar, M.; Passerini, S.; Pringle, J. M.; Ohno, H.; Watanabe, M.; Yan, F.; Zheng, W. J. et al. Ionic liquids and their solid-state analogues as materials for energy generation and storage. Nat. Rev. Mater. 2016, 1, 15005.
[33]
Zhao, K. M.; Liu, S. Q.; Ye, G. Y.; Gan, Q. M.; Zhou, Z.; He, Z. High-yield bottom-up synthesis of 2D metal-organic frameworks and their derived ultrathin carbon nanosheets for energy storage. J. Mater. Chem. A 2018, 6, 2166-2175.
[34]
Guo, X. M.; Qian, C.; Wan, X. H.; Zhang, W.; Zhu, H. W.; Zhang, J. H.; Yang, H. X.; Lin, S. L.; Kong, Q. H.; Fan, T. X. Facile in situ fabrication of biomorphic Co2P-Co3O4/rGO/C as an efficient electrocatalyst for the oxygen reduction reaction. Nanoscale 2020, 12, 4374-4382.
[35]
Zhang, D.; Guo, X. M.; Tong, X. Z.; Chen, Y. F.; Duan, M. T.; Shi, J.; Jiang, C. W.; Hu, L. L.; Kong, Q. H.; Zhang, J. H. High-performance battery-type supercapacitor based on porous biocarbon and biocarbon supported Ni-Co layered double hydroxide. J. Alloys Compd. 2020, 837, 155529.
[36]
Zhang, J. H.; Kong, Q. H.; Wang, D. Y. Simultaneously improving the fire safety and mechanical properties of epoxy resin with Fe-CNTs via large-scale preparation. J. Mater. Chem. A 2018, 6, 6376-6386.
[37]
Yang. J. L.; Ju, Z. C.; Jiang, Y.; Xing, Z.; Xi B. J.; Feng, J. K.; Xiong, S. L. Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage. Adv. Mater. 2018, 30, 1700104.
[38]
Guo, X. M.; Qian, C.; Shi, R. H.; Zhang, W.; Xu, F.; Qian, S. L; Zhang, J. H.; Yang, H. X.; Yuan, A. H.; Fan, T. X. Biomorphic Co—N—C/CoOx composite derived from natural chloroplasts as efficient electrocatalyst for oxygen reduction reaction. Small 2019, 15, 1804855.
[39]
Xue, Y. C.; Yu, T. T.; Chen, J. L.; Wan, X. H.; Cai, X. W.; Guo, X. M.; Zhang, F.; Xiong, W. W.; Liu, Y. J.; Kong, Q. H. et al. Fabrication of GeO2 microspheres/hierarchical porous N-doped carbon with superior cyclic stability for Li-ion batteries. J. Solid State Chem. 2020, 286, 121303.
[40]
Xu, D. M.; Chao, D. L.; Wang, H. W.; Gong, Y. S.; Wang, R.; He, B. B.; Hu, X. L.; Fan, H. J. Flexible quasi-solid-state sodium-ion capacitors developed using 2D metal-organic-framework array as reactor. Adv. Energy Mater. 2018, 8, 1702769.
[41]
Xie, D.; Zhang, J. S.; Pan, G. X.; Li, H. G.; Xie, S. L.; Wang, S. S.; Fan, H. B.; Cheng, F. L.; Xia, X. H. Functionalized N-doped carbon nanotube arrays: Novel binder-free anodes for sodium-ion batteries. ACS Appl. Mater. Interfaces 2019, 11, 18662-18670.
[42]
Hao, R.; Yang, Y.; Wang, H.; Jia, B. B.; Ma, G. S.; Yu, D. D.; Guo, L.; Yang, S. H. Direct chitin conversion to N-doped amorphous carbon nanofibers for high-performing full sodium-ion batteries. Nano Energy 2018, 45, 220-228.
[43]
Luo, D. H.; Han, P.; Shi, L. D.; Huang, J. T.; Yu, J. L.; Lin, Y. M.; Du, J. G.; Yang, B.; Li, C. H.; Zhu, C. Z. et al. Biomass-derived nitrogen/oxygen co-doped hierarchical porous carbon with a large specific surface area for ultrafast and long-life sodium-ion batteries. Appl. Surf. Sci. 2018, 462, 713-719.
[44]
Bai, J.; Xi, B. J.; Mao, H. Z.; Lin, Y.; Ma, X. J.; Feng, J. K.; Xiong, S. L. One-step construction of N,P-codoped porous carbon sheets/CoP hybrids with enhanced lithium and potassium storage. Adv. Mater. 2018, 30, 1802310.
[45]
Haffner, A.; Hatz, A. K.; Moudrakovski, I.; Lotsch, B. V.; Johrendt, D. Fast Sodium-ion conductivity in supertetrahedral phosphidosilicates. Angew. Chem., Int. Ed. 2018, 57, 6155-6160.
[46]
Sun, J. F.; Guo, L. Z.; Sun, X.; Zhang, J. Y.; Hou, L. R.; Li, L.; Yang, S. H.; Yuan, C. Z. One-dimensional nanostructured pseudocapacitive materials: Design, synthesis and applications in supercapacitors. Batter. Superc. 2019, 2, 820-841.
Nano Research
Pages 2862-2868
Cite this article:
Su D, Huang M, Zhang J, et al. High N-doped hierarchical porous carbon networks with expanded interlayers for efficient sodium storage. Nano Research, 2020, 13(10): 2862-2868. https://doi.org/10.1007/s12274-020-2944-0
Topics:

776

Views

104

Crossref

N/A

Web of Science

103

Scopus

11

CSCD

Altmetrics

Received: 19 November 2019
Revised: 26 December 2019
Accepted: 28 December 2019
Published: 05 October 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return