AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Neglected interstitial space in malaria recurrence and treatment

Qiang Zhang1,2Zhuo Ao1,2( )Nan Hu1,3Yuting Zhu1Fulong Liao1,4Dong Han1,2( )
CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China
Department of Traditional Chinese Medicine, Chengde Medical University, Chengde 066000, China
Artemisinin Research Center and the Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100049, China
Show Author Information

Graphical Abstract

Abstract

The interstitial space, a widespread fluid-filled compartment throughout the body, is related to many pathophysiological alterations and diseases, attracting increasing attention. The vital role of interstitial space in malaria infection and treatment has been neglected current research efforts. We confirmed the reinfection capacity of parasites sequestrated in interstitial space, which replenish the mechanism of recurrence. Malaria parasite-infected mice were treated with artemisinin-loaded liposomes through the interstitial space and exhibited a better therapeutic response. Notably, compared with oral administration, interstitial administration showed an unexpectedly high activation and recruitment of immune cells, and resulted in better clearance of sequestered parasites from organs, and enhanced pathological recovery. The interstitial route of administration prolongs the blood circulation time of artemisinin and increases its plasma concentration, and may compensate for the inefficiency of oral administration and the nanotoxicity of intravenous administration, providing a potential strategy for infectious disease therapy.

References

[1]
Hu, N.; Shi, X. L.; Zhang, Q.; Liu, W. T.; Zhu, Y. T.; Wang, Y. Q.; Hou, Y.; Ji, Y. L.; Cao, Y. P.; Zeng, Q. et al. Special interstitial route can transport nanoparticles to the brain bypassing the blood-brain barrier. Nano Res. 2019, 12, 2760-2765.
[2]
Venkatesh, B.; Morgan, T. J.; Cohen, J. Interstitium: The next diagnostic and therapeutic platform in critical illness. Crit. Care Med. 2010, 38, S630-S636.
[3]
Wiig, H.; Rubin, K.; Reed, R. K. New and active role of the interstitium in control of interstitial fluid pressure: Potential therapeutic consequences. Acta Anaesthesiol. Scand. 2003, 47, 111-121.
[4]
Benias, P. C.; Wells, R. G.; Sackey-Aboagye, B.; Klavan, H.; Reidy, J.; Buonocore, D.; Miranda, M.; Kornacki, S.; Wayne, M.; Carr-Locke, D. L. et al. Structure and distribution of an unrecognized interstitium in human tissues. Sci. Rep. 2018, 8, 4947.
[5]
Kumar, A.; Ghosh, S. K.; Faiq, M. A.; Deshmukh, V. R.; Kumari, C.; Pareek, V. A brief review of recent discoveries in human anatomy. QJM: An Int. J. Med. 2019, 112, 567-573.
[6]
Hu, N.; Cao, Y. P.; Ao, Z.; Han, X. X.; Zhang, Q.; Liu, W. T.; Liu, S. D.; Liao, F. L.; Han, D. Flow behavior of liquid metal in the connected fascial space: Intervaginal space injection in the rat wrist and mice with tumor. Nano Res. 2018, 11, 2265-2276.
[7]
Shi, X. L.; Zhu, Y. T.; Hua, W. D.; Ji, Y. L.; Ha, Q.; Han, X. X.; Liu, Y.; Gao, J. W.; Zhang, Q.; Liu, S. D. et al. An in vivo study of the biodistribution of gold nanoparticles after intervaginal space injection in the tarsal tunnel. Nano Res. 2016, 9, 2097-2109.
[8]
Sicard, R. E.; Nguyen, L. M. P. Interstitial fluids associated with wound repair support proliferation but not differentiation of neonatal rat myoblasts in vitro. Wound Repair Regen. 1994, 2, 306-313.
[9]
Correa-Gallegos, D.; Jiang, D. S.; Christ, S.; Ramesh, P.; Ye, H. F.; Wannemacher, J.; Gopal, S. K.; Yu, Q.; Aichler, M.; Walch, A. et al. Patch repair of deep wounds by mobilized fascia. Nature 2019, 576, 287-292.
[10]
Wardlaw, J. M.; Benveniste, H.; Nedergaard, M.; Zlokovic, B. V.; Mestre, H.; Lee, H.; Doubal, F. N.; Brown, R.; Ramirez, J.; MacIntosh, B. J. et al. Perivascular spaces in the brain: Anatomy, physiology and pathology. Nat. Rev. Neurol. 2020, 16, 137-153.
[11]
Rasmussen, M. K.; Mestre, H.; Nedergaard, M. The glymphatic pathway in neurological disorders. Lancet Neurol. 2018, 17, 1016-1024.
[12]
Kim, Y. K.; Nam, K. I.; Song, J. The glymphatic system in diabetes- induced dementia. Front. Neurol. 2018, 9, 867.
[13]
Jiang, Q.; Zhang, L.; Ding, G. L.; Davoodi-Bojd, E.; Li, Q. J.; Li, L.; Sadry, N.; Nedergaard, M.; Chopp, M.; Zhang, Z. G. Impairment of the glymphatic system after diabetes. J. Cereb. Blood Flow Metab. 2017, 37, 1326-1337.
[14]
Tarasoff-Conway, J. M.; Carare, R. O.; Osorio, R. S.; Glodzik, L.; Butler, T.; Fieremans, E.; Axel, L.; Rusinek, H.; Nicholson, C.; Zlokovic, B. V. et al. Clearance systems in the brain-implications for Alzheimer disease. Nat. Rev. Neurol. 2015, 11, 457-470.
[15]
Promeneur, D.; Lunde, L. K.; Amiry-Moghaddam, M.; Agre, P. Protective role of brain water channel AQP4 in murine cerebral malaria. Proc. Natl. Acad. Sci. USA 2013, 110, 1035-1040.
[16]
Fedosov, D. A.; Caswell, B.; Suresh, S.; Karniadakis, G. E. Quantifying the biophysical characteristics of Plasmodium-falciparum-parasitized red blood cells in microcirculation. Proc. Natl. Acad. Sci. USA 2011, 108, 35-39.
[17]
Coban, C.; Lee, M. S. J.; Ishii, K. J. Tissue-specific immunopathology during malaria infection. Nat. Rev. Immunol. 2018, 18, 266-278.
[18]
Shaw, T. N.; Stewart-Hutchinson, P. J.; Strangward, P.; Dandamudi, D. B.; Coles, J. A.; Villegas-Mendez, A.; Gallego-Delgado, J.; van Rooijen, N.; Zindy, E.; Rodriguez, A.; Brewer, J. M. et al. Perivascular arrest of CD8+ T cells is a signature of experimental cerebral malaria. PLoS Pathog. 2015, 11, e1005210.
[19]
Lackner, P.; Beer, R.; Helbok, R.; Broessner, G.; Engelhardt, K.; Brenneis, C.; Schmutzhard, E.; Pfaller, K. Scanning electron microscopy of the neuropathology of murine cerebral malaria. Malar. J. 2006, 5, 116.
[20]
De Niz, M.; Nacer, A.; Frischknecht, F. Intravital microscopy: Imaging host-parasite interactions in the brain. Cell. Microbiol. 2019, 21, e13024.
[21]
Nacer, A.; Movila, A.; Baer, K.; Mikolajczak, S. A.; Kappe, S. H. I.; Frevert, U. Neuroimmunological blood brain barrier opening in experimental cerebral malaria. PLoS Pathog. 2012, 8, e1002982.
[22]
Karch, R.; Neumann, F.; Podesser, B. K.; Neumann, M.; Szawlowski, P.; Schreiner, W. Fractal properties of perfusion heterogeneity in optimized arterial trees: A model study. J. Gen. Physiol. 2003, 122, 307-321.
[23]
Klayman, D. L. Qinghaosu (artemisinin): An antimalarial drug from China. Science 1985, 228, 1049-1055.
[24]
Thrane, V. R.; Thrane, A. S.; Plog, B. A.; Thiyagarajan, M.; Iliff, J. J.; Deane, R.; Nagelhus, E. A.; Nedergaard, M. Paravascular microcirculation facilitates rapid lipid transport and astrocyte signaling in the brain. Sci. Rep. 2013, 3, 2582.
[25]
Iliff, J. J.; Wang, M. H.; Liao, Y. H.; Plogg, B. A.; Peng, W. G.; Gundersen, G. A.; Benveniste, H.; Vates, G. E.; Deane, R.; Goldman, S. A. et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including Amyloidβ. Sci. Transl. Med. 2012, 4, 147ra111.
[26]
Ahn, J. H.; Cho, H.; Kim, J. H.; Kim, S. H.; Ham, J. S.; Park, I.; Suh, S. H.; Hong, S. P.; Song, J. H.; Hong, Y. K. et al. Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid. Nature 2019, 572, 62-66.
[27]
Stan, R. V.; Tse, D.; Deharvengt, S. J.; Smits, N. C.; Xu, Y.; Luciano, M. R.; McGarry, C. L.; Buitendijk, M.; Nemani, K. V.; Elgueta, R. et al. The diaphragms of fenestrated endothelia: Gatekeepers of vascular permeability and blood composition. Dev. Cell 2012, 23, 1203-1218.
[28]
Casley-Smith, J. R. Functioning and interrelationships of blood capillaries and lymphatics. Experientia 1976, 32, 1-12.
[29]
Cowman, A. F.; Healer, J.; Marapana, D.; Marsh, K. Malaria: Biology and disease. Cell 2016, 167, 610-624.
[30]
Cowman, A. F.; Crabb, B. S. Invasion of red blood cells by malaria parasites. Cell 2006, 124, 755-766.
[31]
Yamauchi, L. M.; Coppi, A.; Snounou, G.; Sinnis, P. Plasmodium sporozoites trickle out of the injection site. Cell. Microbiol. 2007, 9, 1215-1222.
[32]
Hopp, C. S.; Chiou, K.; Ragheb, D. R. T.; Salman, A. M.; Khan, S. M.; Liu, A. J.; Sinnis, P. Longitudinal analysis of Plasmodium sporozoite motility in the dermis reveals component of blood vessel recognition. eLife 2015, 4, e07789.
[33]
Amino, R.; Giovannini, D.; Thiberge, S.; Gueirard, P.; Boisson, B.; Dubremetz, J. F.; Prévost, M. C.; Ishino, T.; Yuda, M.; Ménard, R. Host cell traversal is important for progression of the malaria parasite through the dermis to the liver. Cell Host Microbe 2008, 3, 88-96.
[34]
Sinnis, P.; Zavala, F. The skin stage of malaria infection: Biology and relevance to the malaria vaccine effort. Future Microbiol. 2008, 3, 275-278.
[35]
Amino, R.; Thiberge, S.; Martin, B.; Celli, S.; Shorte, S.; Frischknecht, F.; Ménard, R. Quantitative imaging of Plasmodium transmission from mosquito to mammal. Nat. Med. 2006, 12, 220-224.
[36]
Ejigiri, I.; Sinnis, P. Plasmodium sporozoite-host interactions from the dermis to the hepatocyte. Curr. Opin. Microbiol. 2009, 12, 401-407.
[37]
Lepore, E.; Casola, I.; Dobrowolny, G.; Musarò, A. Neuromuscular junction as an entity of nerve-muscle communication. Cells 2019, 8, 906.
[38]
Alvarez-Suarez, P.; Gawor, M.; Prószyński, T. J. Perisynaptic schwann cells—The multitasking cells at the developing neuromuscular junctions. Semin. Cell Dev. Biol. in press, .
[39]
Munford, R. S. Severe sepsis and septic shock: The role of gram-negative bacteremia. Annu. Rev. Pathol.: Mech. Dis. 2006, 1, 467-496.
[40]
Abtin, A.; Jain, R.; Mitchell, A. J.; Roediger, B.; Brzoska, A. J.; Tikoo, S.; Cheng, Q.; Ng, L. G.; Cavanagh, L. L.; von Andrian, U. H. et al. Perivascular macrophages mediate neutrophil recruitment during bacterial skin infection. Nat. Immunol. 2014, 15, 45-53.
[41]
Couderc, T.; Chrétien, F.; Schilte, C.; Disson, O.; Brigitte, M.; Guivel-Benhassine, F.; Touret, Y.; Barau, G.; Cayet, N.; Schuffenecker, I. et al. A mouse model for chikungunya: Young age and inefficient type-I interferon signaling are risk factors for severe disease. PLoS Pathog. 2008, 4, e29.
[42]
Veness, M. J.; Biankin, S. Perineural spread leading to orbital invasion from skin cancer. Australas. Radiol. 2000, 44, 296-302.
[43]
Baig, A. M. Primary amoebic meningoencephalitis: Neurochemotaxis and neurotropic preferences of Naegleria fowleri. ACS Chem. Neurosci. 2016, 7, 1026-1029.
[44]
Netland, J.; Meyerholz, D. K.; Moore, S.; Cassell, M.; Perlman, S. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J. Virol. 2008, 82, 7264-7275.
[45]
Baig, A. M.; Khaleeq, A.; Ali, U.; Syeda, H. Evidence of the COVID-19 virus targeting the CNS: Tissue distribution, host-virus interaction, and proposed neurotropic mechanisms. ACS Chem. Neurosci. 2020, 11, 995-998.
Nano Research
Pages 2869-2878
Cite this article:
Zhang Q, Ao Z, Hu N, et al. Neglected interstitial space in malaria recurrence and treatment. Nano Research, 2020, 13(10): 2869-2878. https://doi.org/10.1007/s12274-020-2946-y
Topics:

751

Views

8

Crossref

N/A

Web of Science

8

Scopus

0

CSCD

Altmetrics

Received: 14 May 2020
Revised: 15 June 2020
Accepted: 19 June 2020
Published: 05 October 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return