Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Scalable and controllable synthesis of 2D high-proportion 1T-phase MoS2

Xiang Gao1,2Liukang Xiong1Jiabin Wu1Jun Wan1Liang Huang1()
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Two-dimensional molybdenum disulfide (2D MoS2) is considered as a promising candidate for many applications due to its unique structure and properties. However, the controllable synthesis of large-scale and high-quality 2D 1T-phase MoS2 is still a challenge. Herein, we present the scalable and controllable synthesis of 2D MoS2 from 2H to 1T@2H phase by using K2SO4 salt as a simultaneous high-temperature sulfur source and template. The as-synthesized 1T@2H-2D MoS2 exhibits a high yield and can be easily assembled into freestanding electrode with high specific capacitance of 434 F/g at a scan rate of 1 mV/s in LiClO4 ethylene carbonate/dimethyl carbonate (EC/DMC). Moreover, various single-crystal 2D transition metal sulfides (WS2, PbS, MnS and Ni9S8) and 2D S-doped carbon can be synthesized using this method. We believe that this study may provide a new sight for scalable and controllable synthesis of other 2D materials beyond 2D MoS2.

Electronic Supplementary Material

Download File(s)
12274_2020_2950_MOESM1_ESM.pdf (2.3 MB)

References

[1]
Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147-150.
[2]
Liu, L.; Wu, J. X.; Wu, L. Y.; Ye, M.; Liu, X. Z.; Wang, Q.; Hou, S. Y.; Lu, P. F.; Sun, L. F.; Zheng, J. Y. et al. Phase-selective synthesis of 1T' MoS2 monolayers and heterophase bilayers. Nat. Mater. 2018, 17, 1108-1114.
[3]
Cai, Y. Q.; Lan, J. H.; Zhang, G.; Zhang, Y. W. Lattice vibrational modes and phonon thermal conductivity of monolayer MoS2. Phys. Rev. B 2014, 89, 035438.
[4]
Bertolazzi, S.; Brivio, J.; Kis, A. Stretching and breaking of ultrathin MoS2. ACS Nano 2011, 5, 9703-9709.
[5]
Perkins, F. K.; Friedman, A. L.; Cobas, E.; Campbell, P. M.; Jernigan, G. G.; Jonker, B. T. Chemical vapor sensing with monolayer MoS2. Nano Lett. 2013, 13, 668-673.
[6]
Acerce, M.; Voiry, D.; Chhowalla, M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 2015, 10, 313-318.
[7]
Liu, Y. Y.; Wu, J. J.; Hackenberg, K. P.; Zhang, J.; Wang, Y. M.; Yang, Y. C.; Keyshar, K.; Gu, J.; Ogitsu, T.; Vajtai, R. et al. Self-optimizing, highly surface-active layered metal dichalcogenide catalysts for hydrogen evolution. Nat. Energy 2017, 6, 17127.
[8]
Li, G. Q.; Zhang, D.; Qiao, Q.; Yu, Y. F.; Peterson, D.; Zafar, A.; Kumar, R.; Curtarolo, S.; Hunte, F.; Shannon, S. et al. All the catalytic active sites of MoS2 for hydrogen evolution. J. Am. Chem. Soc. 2016, 138, 16632-16638.
[9]
Zhang, H. Ultrathin two-dimensional nanomaterials. ACS Nano 2015, 9, 9451-9469.
[10]
Butler, S. Z.; Hollen, S. M.; Cao, L. Y.; Cui, Y.; Gupta, J. A.; Gutiérrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J. X.; Ismach, A. F. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 2013, 7, 2898-2926.
[11]
Zhao, M. T.; Huang, Y.; Peng, Y. W.; Huang, Z. Q.; Ma, Q. L.; Zhang, H. Two-dimensional metal-organic framework nanosheets: Synthesis and applications. Chem. Soc. Rev. 2018, 47, 6267-6295.
[12]
Chhowalla, M.; Jena, D.; Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 2016, 1, 16052.
[13]
Li, H.; Wu, J.; Yin, Z. Y.; Zhang, H. Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Acc. Chem. Res. 2014, 47, 1067-1075.
[14]
Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497-501.
[15]
Varrla, E.; Backes, C.; Paton, K. R.; Harvey, A.; Gholamvand, Z.; McCauley, J.; Coleman, J. N. Large-scale production of size-controlled MoS2 nanosheets by shear exfoliation. Chem. Mater. 2015, 27, 1129-1139.
[16]
Zhang, X.; Lai, Z. C.; Tan, C. L.; Zhang, H. Solution-processed two-dimensional MoS2 nanosheets: Preparation, hybridization, and applications. Angew. Chem., Int. Ed. 2016, 55, 8816-8838.
[17]
Zeng, Z. Y.; Sun, T.; Zhu, J. X.; Huang, X.; Yin, Z. Y.; Lu, G.; Fan, Z. X.; Yan, Q. Y.; Hng, H. H.; Zhang, H. An effective method for the fabrication of few-layer-thick inorganic nanosheets. Angew. Chem., Int. Ed. 2012, 51, 9052-9056.
[18]
Shi, Y. M.; Li, H. N.; Li, L. J. Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques. Chem. Soc. Rev. 2015, 44, 2744-2756.
[19]
Dong, R. H.; Zhang, T.; Feng, X. L. Interface-assisted synthesis of 2D materials: Trend and challenges. Chem. Rev. 2018, 118, 6189-6235.
[20]
Chen, Y.; Gan, L.; Li, H. Q.; Ma, Y.; Zhai, T. Y. Achieving uniform monolayer transition metal dichalcogenides film on silicon wafer via silanization treatment: A typical study on WS2. Adv. Mater. 2017, 29, 1603500.
[21]
Li, C.; Huang, L.; Snigdha, G. P.; Yu, Y. F.; Cao, L. Y. Role of boundary layer diffusion in vapor deposition growth of chalcogenide nanosheets: The case of GeS. ACS Nano 2012, 6, 8868-8877.
[22]
Wang, P. P.; Sun, H. Y.; Ji, Y. J.; Li, W. H.; Wang, X. Three-dimensional assembly of single-layered MoS2. Adv. Mater. 2014, 26, 964-969.
[23]
Voiry, D.; Mohite, A.; Chhowalla, M. Phase engineering of transition metal dichalcogenides. Chem. Soc. Rev. 2015, 44, 2702-2712.
[24]
Wypych, F.; Weber, T.; Prins, R. Scanning tunneling microscopic investigation of 1T-MoS2. Chem. Mater. 1998, 10, 723-727.
[25]
Shi, S. L.; Sun, Z. X.; Hu, Y. H. Synthesis, stabilization and applications of 2-dimensional 1T metallic MoS2. J. Mater. Chem. A 2018, 6, 23932-23977.
[26]
Chang, K.; Hai, X.; Pang, H.; Zhang, H. B.; Shi, L.; Liu, G. G.; Liu, H. M.; Zhao, G. X.; Li, M.; Ye, J. H. Targeted synthesis of 2H- and 1T-phase MoS2 monolayers for catalytic hydrogen evolution. Adv. Mater. 2016, 28, 10033-10041.
[27]
Li, X.; Li, X. M.; Zang, X. B.; Zhu, M.; He, Y. J.; Wang, K. L.; Xie, D.; Zhu, H. W. Role of hydrogen in the chemical vapor deposition growth of MoS2 atomic layers. Nanoscale 2015, 7, 8398-8404.
[28]
Heyne, M. H.; Chiappe, D.; Meersschaut, J.; Nuytten, T.; Conard, T.; Bender, H.; Huyghebaert, C.; Radu, I. P.; Caymax, M.; de Marneffe, J. F. et al. Multilayer MoS2 growth by metal and metal oxide sulfurization. J. Mater. Chem. C 2016, 4, 1295-1304.
[29]
Xiao, X.; Wang, H.; Urbankowski, P.; Gogotsi, Y. Topochemical synthesis of 2D materials. Chem. Soc. Rev. 2018, 47, 8744-8765.
[30]
Matte, H. S. S. R.; Gomathi, A.; Manna, A. K.; Late, D. J.; Datta, R.; Pati, S. K.; Rao, C. N. R. MoS2 and WS2 analogues of graphene. Angew. Chem., Int. Ed. 2010, 49, 4059-4062.
[31]
Yu, H. M.; Yang, X.; Xiao, X.; Chen, M.; Zhang, Q. H.; Huang, L.; Wu, J. B.; Li, T. Q.; Chen, S. M.; Song, L. et al. Atmospheric-pressure synthesis of 2D nitrogen-rich tungsten nitride. Adv. Mater. 2018, 30, 1805655.
[32]
Xiao, X.; Song, H. B.; Lin, S. Z.; Zhou, Y.; Zhan, X. J.; Hu, Z. M.; Zhang, Q.; Sun, J. Y.; Yang, B.; Li, T. Q. et al. Scalable salt-templated synthesis of two-dimensional transition metal oxides. Nat. Commun. 2016, 7, 11296.
[33]
Startsev, A. N.; Kruglyakova, O. V. Diatomic gaseous sulfur obtained at low temperature catalytic decomposition of hydrogen sulfide. J. Chem. Chem. Eng. 2013, 7, 1007-1013.
[34]
Wang, S.; Zhang, D.; Li, B.; Zhang, C.; Du, Z. G.; Yin, H. M.; Bi, X. F.; Yang, S. B. Ultrastable in-plane 1T-2H MoS2 heterostructures for enhanced hydrogen evolution reaction. Adv. Energy Mater. 2018, 8, 1801345.
[35]
Wang, L. L.; Liu, X.; Luo, J. M.; Duan, X. D.; Crittenden, J.; Liu, C. B.; Zhang, S. Q.; Pei, Y.; Zeng, Y. X.; Duan, X. F. Self-optimization of the active site of molybdenum disulfide by an irreversible phase transition during photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2017, 56, 7610-7614.
[36]
Yoo, H. D.; Li, Y. F.; Liang, Y. L.; Lan, Y. C.; Wang, F.; Yao, Y. Intercalation pseudocapacitance of exfoliated molybdenum disulfide for ultrafast energy storage. ChemNanoMat 2016, 2, 688-691.
[37]
Wang, X.; Ding, W.; Li, H.; Li, H.; Zhu, S. J.; Zhu, X. G.; Dai, J. M.; Sheng, Z. G.; Wang, H.; Zhu, X. B. et al. Unveiling highly ambient-stable multilayered 1T-MoS2 towards all-solid-state flexible supercapacitors. J. Mater. Chem. A 2019, 7, 19152-19160.
[38]
Patil, S. J.; Kim, J. H.; Lee, D. W. Graphene-nanosheet wrapped cobalt sulphide as a binder free hybrid electrode for asymmetric solid-state supercapacitor. J. Power Sources 2017, 342, 652-665.
[39]
Zhou, R.; Han, C. J.; Wang, X. M. Hierarchical MoS2-coated three-dimensional graphene network for enhanced supercapacitor performances. J. Power Sources 2017, 352, 99-110.
[40]
Majumder, M.; Choudhary, R. B.; Koiry, S. P.; Thakur, A. K.; Kumar, U. Gravimetric and volumetric capacitive performance of polyindole/ carbon black/MoS2 hybrid electrode material for supercapacitor applications. Electrochim. Acta 2017, 248, 98-111.
[41]
Zhang, S. W.; Yin, B. S.; Wang, Z. B.; Peter, F. Super long-life all solid-state asymmetric supercapacitor based on NiO nanosheets and α-Fe2O3 nanorods. Chem. Eng. J. 2016, 306, 193-203.
[42]
Karade, S. S.; Dubal, D. P.; Sankapal, B. R. Decoration of ultrathin MoS2 nanoflakes over MWCNTs: Enhanced supercapacitive performance through electrode to symmetric all-solid-state device. ChemistrySelect 2017, 2, 10405-10412.
[43]
Chen, Y. X.; Ma, W. J.; Cai, K. F.; Yang, X. W.; Huang, C. J. In situ growth of polypyrrole onto three-dimensional tubular MoS2 as an advanced negative electrode material for supercapacitor. Electrochim. Acta 2017, 246, 615-624.
[44]
Li, Y. J.; Wang, G. L.; Wei, T.; Fan, Z. J.; Yan, P. Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors. Nano Energy 2016, 19, 165-175.
[45]
Cook, J. B.; Kim, H. S.; Lin, T. C.; Lai, C. H.; Dunn, B.; Tolbert, S. H. Pseudocapacitive charge storage in thick composite MoS2 nanocrystal- based electrodes. Adv. Energy Mater. 2017, 7, 1601283.
[46]
Jia, Y. L.; Wan, H. Q.; Chen, L.; Zhou, H. D.; Chen, J. M. Hierarchical nanosheet-based MoS2/graphene nanobelts with high electrochemical energy storage performance. J. Power Sources 2017, 354, 1-9.
[47]
Mahmood, A.; Zou, R. Q.; Wang, Q. F.; Xia, W.; Tabassum, H.; Qiu, B.; Zhao, R. Nanostructured electrode materials derived from metal- organic framework xerogels for high-energy-density asymmetric supercapacitor. ACS Appl. Mater. Interfaces 2016, 8, 2148-2157.
Nano Research
Pages 2933-2938
Cite this article:
Gao X, Xiong L, Wu J, et al. Scalable and controllable synthesis of 2D high-proportion 1T-phase MoS2. Nano Research, 2020, 13(11): 2933-2938. https://doi.org/10.1007/s12274-020-2950-2
Topics:
Metrics & Citations  
Article History
Copyright
Return