AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Controllable optical emission wavelength in all-inorganic halide perovskite alloy microplates grown by two-step chemical vapor deposition

Mohammad K. Hossain1,2Pengfei Guo5Wayesh Qarony4Yuen H. Tsang4Chaoping Liu6,7Sai W. Tsang3Johnny C. Ho3Kin M. Yu1,3( )
Department of Physics, City University of Hong Kong, Kowloon, Hong Kong SAR, China
Department of Physics, Comilla University, Kotbari, Cumilla 3506, Bangladesh
Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China
Research Center for Advanced Optics and Photoelectronics, Department of Physics, College of Science, Shantou University, Shantou 515063, China
Key Laboratory of Intelligent Manufacturing Technology of MOE, Shantou University, Shantou 515063, China
Show Author Information

Graphical Abstract

Abstract

All-inorganic halide perovskites (IHP), CsPbX3 (X = Cl, Br, I) exhibiting efficient optical emissions within the spectral range of 410 to 730 nm are potential candidates for many optoelectronic devices. Anion alloying of these IHPs is expected to achieve tunable emission wavelength covering the entire visible spectrum. Here, we developed a two-step chemical vapor deposition (CVD) process for growing quaternary IHP CsPbX3 (X = Cl/Br and Br/I) alloys. By exploiting the fast diffusion of halide anions in IHPs, the alloy composition can be precisely controlled by the growth time of the respective layers once the growth of the individual ternary IHP is optimized. Hence complexities in the multi-parameter optimization in the conventional CVD growth of quaternary alloys can be mitigated. Using this process, we synthesized single crystalline, homogeneous and thermally stable CsPbCl3(1-x)Br3x and CsPbBr3(1-x)I3x perovskites alloy microplates and demonstrated continuously tunable emission covering the spectrum from 428 to 715 nm by varying the halide compositions in the alloys. These alloy microplates also exhibit room temperature amplified spontaneous emissions (ASE) along with strong photonic discharges from the microplate’s edges and hence are potentially useful as a gain medium as well as optical cavities for emissions with wavelengths covering the visible spectrum.

Electronic Supplementary Material

Download File(s)
12274_2020_2951_MOESM1_ESM.pdf (1.9 MB)

References

[1]
Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050-6051.
[2]
NREL Best Research-Cell Efficiencies[Online]. https://www.nrel.gov/pv/cell-efficiency.html (accessed April 16, 2020).
[3]
Huang, H.; Polavarapu, L.; Sichert, J. A.; Susha, A. S.; Urban, A. S.; Rogach, A. L. Colloidal lead halide perovskite nanocrystals: Synthesis, optical properties and applications. NPG Asia Mater. 2016, 8, e328.
[4]
Yin, W. J.; Yan, Y. F.; Wei, S. H. Anomalous alloy properties in mixed halide perovskites. J. Phys. Chem. Lett. 2014, 5, 3625-3631.
[5]
Filip, M. R.; Eperon, G. E.; Snaith, H. J.; Giustino, F. Steric engineering of metal-halide perovskites with tunable optical band gaps. Nat. Commun. 2014, 5, 5757.
[6]
Li, Z.; Yang, M. J.; Park, J. S.; Wei, S. H.; Berry, J. J.; Zhu, K. Stabilizing perovskite structures by tuning tolerance factor: Formation of formamidinium and cesium lead iodide solid-state alloys. Chem. Mater. 2016, 28, 284-292.
[7]
Ning, C. Z.; Dou, L. T.; Yang, P. D. Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions. Nat. Rev. Mater. 2017, 2, 17070.
[8]
Kim, A.; Son, B. H.; Kim, H. S.; Ahn, Y. H. Direct measurement of diffusion length in mixed lead-halide perovskite films using scanning photocurrent microscopy. Curr. Opt. Photonics 2018, 2, 514-518.
[9]
Eaton, S. W.; Lai, M. L.; Gibson, N. A.; Wong, A. B.; Dou, L.; Ma, J.; Wang, L. W.; Leone, S. R.; Yang, P. D. Lasing in robust cesium lead halide perovskite nanowires. Proc. Natl. Acad. Sci. USA 2016, 113, 1993-1998.
[10]
Ahmadi, M.; Wu, T.; Hu, B. A review on organic-inorganic halide perovskite photodetectors: Device engineering and fundamental physics. Adv. Mater. 2017, 29, 1605242.
[11]
Fu, Y. P.; Zhu, H. M.; Schrader, A. W.; Liang, D.; Ding, Q.; Joshi, P.; Hwang, L.; Zhu, X. Y.; Jin, S. Nanowire lasers of formamidinium lead halide perovskites and their stabilized alloys with improved stability. Nano Lett. 2016, 16, 1000-1008.
[12]
Edri, E.; Kirmayer, S.; Cahen, D.; Hodes, G. High open-circuit voltage solar cells based on organic-inorganic lead bromide perovskite. J. Phys. Chem. Lett. 2013, 4, 897-902.
[13]
Eperon, G. E.; Paternò, G. M.; Sutton, R. J.; Zampetti, A.; Haghighirad, A. A.; Cacialli, F.; Snaith, H. J. Inorganic caesium lead iodide perovskite solar cells. J. Mater. Chem. A 2015, 3, 19688-19695.
[14]
Jiang, Y.; Leyden, M. R.; Qiu, L. B.; Wang, S. H.; Ono, L. K.; Wu, Z. F.; Juarez-Perez, E. J.; Qi, Y. B. Combination of hybrid CVD and cation exchange for upscaling Cs-substituted mixed cation perovskite solar cells with high efficiency and stability. Adv. Funct. Mater. 2018, 28, 1703835.
[15]
Song, J. Z.; Li, J. H.; Li, X. M.; Xu, L. M.; Dong, Y. H.; Zeng, H. B. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater. 2015, 27, 7162-7167.
[16]
Yang, T.; Zheng, Y. P.; Du, Z. T.; Liu, W. N.; Yang, Z. B.; Gao, F. M.; Wang, L.; Chou, K. C.; Hou, X. M.; Yang, W. Y. Superior photodetectors based on all-inorganic perovskite CsPbI3 nanorods with ultrafast response and high stability. ACS Nano 2018, 12, 1611-1617.
[17]
Zhang, Y. P.; Liu, J. Y.; Wang, Z. Y.; Xue, Y. Z.; Ou, Q. D.; Polavarapu, L.; Zheng, J L. Qi, X.; Bao, Q. L. Synthesis, properties, and optical applications of low-dimensional perovskites. Chem. Commun. 2016, 52, 13637-13655.
[18]
Dursun, I.; Shen, C.; Parida, M. R.; Pan, J.; Sarmah, S. P.; Priante, D.; Alyami, N.; Liu, J. K.; Saidaminov, M. I.; Alias, M. S. et al. Perovskite nanocrystals as a color converter for visible light communication. ACS Photonics 2016, 3, 1150-1156.
[19]
Wei, H. T.; Fang, Y. J.; Mulligan, P.; Chuirazzi, W.; Fang, H. H.; Wang, C. C.; Ecker, B. R.; Gao, Y. L.; Loi, M. A.; Cao, L. et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat. Photonics 2016, 10, 333-339.
[20]
Aamir, M.; Adhikari, T.; Sher, M.; Khan, M. D.; Akhtar, J.; Nunzi, J. M. Cesium lead halide perovskite nanostructures: Tunable morphology and halide composition. Chem. Rec. 2018, 18, 230-238.
[21]
Beal, R. E.; Slotcavage, D. J.; Leijtens, T.; Bowring, A. R.; Belisle, R. A.; Nguyen, W. H.; Burkhard, G. F.; Hoke, E. T.; McGehee, M. D. Cesium lead halide perovskites with improved stability for tandem solar cells. J. Phys. Chem. Lett. 2016, 7, 746-751.
[22]
Park, K.; Lee, J. W.; Kim, J. D.; Han, N. S.; Jang, D. M.; Jeong, S.; Park, J.; Song, J. K. Light-matter interactions in cesium lead halide perovskite nanowire lasers. J. Phys. Chem. Lett. 2016, 7, 3703-3710.
[23]
Nam, J. K.; Chai, S. U.; Cha, W.; Choi, Y. J.; Kim, W.; Jung, M. S.; Kwon, J.; Kim, D.; Park, J. H. Potassium incorporation for enhanced performance and stability of fully inorganic cesium lead halide perovskite solar cells. Nano Lett. 2017, 17, 2028-2033.
[24]
Ju, M. G.; Dai, J.; Ma, L.; Zeng, X. C. Lead-free mixed tin and germanium perovskites for photovoltaic application. J. Am. Chem. Soc. 2017, 139, 8038-8043.
[25]
Tenuta, E.; Zheng, C.; Rubel, O. Thermodynamic origin of instability in hybrid halide perovskites. Sci. Rep. 2016, 6, 37654.
[26]
Seth, S.; Samanta, A. A facile methodology for engineering the morphology of CsPbX3 perovskite nanocrystals under ambient condition. Sci. Rep. 2016, 6, 37693.
[27]
Dastidar, S.; Egger, D. A.; Tan, L. Z.; Cromer, S. B.; Dillon, A. D.; Liu, S.; Kronik, L.; Rappe, A. M.; Fafarman, A. T. High chloride doping levels stabilize the perovskite phase of cesium lead iodide. Nano Lett. 2016, 16, 3563-3570.
[28]
Xu, T. T.; Chen, L. X.; Guo, Z. H.; Ma, T. L. Strategic improvement of the long-term stability of perovskite materials and perovskite solar cells. Phys. Chem. Chem. Phys. 2016, 18, 27026-27050.
[29]
Hoffman, J. B.; Schleper, A. L.; Kamat, P. V. Transformation of sintered CsPbBr3 nanocrystals to cubic CsPbI3 and gradient CsPbBrxI3-x through halide exchange. J. Am. Chem. Soc. 2016, 138, 8603-8611.
[30]
Li, X. M.; Cao, F.; Yu, D. J.; Chen, J.; Sun, Z. G.; Shen, Y. L.; Zhu, Y.; Wang, L.; Wei, Y.; Wu, Y. et al. All inorganic halide perovskites nanosystem: Synthesis, structural features, optical properties and optoelectronic applications. Small 2017, 13, 1603996.
[31]
Zhang, L. Q.; Yang, X. L.; Jiang, Q.; Wang, P. Y.; Yin, Z. G.; Zhang, X. W.; Tan, H. R.; Yang, Y.; Wei, M. Y.; Sutherland, B. R. et al. Ultra-bright and highly efficient inorganic based perovskite light- emitting diodes. Nat. Commun. 2017, 8, 15640.
[32]
Ndione, P. F.; Li, Z.; Zhu, K. Effects of alloying on the optical properties of organic-inorganic lead halide perovskite thin films. J. Mater. Chem. C 2016, 4, 7775-7782.
[33]
Lei, T.; Lai, M. L.; Kong, Q.; Lu, D.; Lee, W.; Dou, L. T.; Wu, V.; Yu, Y.; Yang, P. D. Electrical and optical tunability in all-inorganic halide perovskite alloy nanowires. Nano Lett. 2018, 18, 3538-3542.
[34]
Zhou, H.; Yuan, S. P.; Wang, X. X.; Xu, T.; Wang, X.; Li, H. L.; Zheng, W. H.; Fan, P.; Li, Y. Y.; Sun, L. T. et al. Vapor growth and tunable lasing of band gap engineered cesium lead halide perovskite micro/nanorods with triangular cross section. ACS Nano 2017, 11, 1189-1195.
[35]
Stranks, S. D.; Snaith, H. J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol. 2015, 10, 391-402.
[36]
Zhou, Z. Q.; Cui, Y.; Deng, H. X.; Huang, L.; Wei, Z. M.; Li, J. B. Modulation of electronic and optical properties in mixed halide perovskites CsPbCl3xBr3(1-x) and CsPbBr3xI3(1-x). Appl. Phys. Lett. 2017, 110, 113901.
[37]
Gil-Escrig, L.; Momblona, C.; La-Placa, M. G.; Boix, P. P.; Sessolo, M.; Bolink, H. J. Vacuum deposited triple-cation mixed-halide perovskite solar cells. Adv. Energy Mater. 2018, 8, 1703506.
[38]
Huang, H.; Bodnarchuk, M. I.; Kershaw, S. V.; Kovalenko, M. V.; Rogach, A. L. Lead halide perovskite nanocrystals in the research spotlight: Stability and defect tolerance. ACS Energy Lett. 2017, 2, 2071-2083.
[39]
Pan, G. C.; Bai, X.; Yang, D. W.; Chen, X.; Jing, P. T.; Qu, S. N.; Zhang, L. J.; Zhou, D. L.; Zhu, J. Y.; Xu, W. et al. Doping lanthanide into perovskite nanocrystals: Highly improved and expanded optical properties. Nano Lett. 2017, 17, 8005-8011.
[40]
Zhang, J.; Shang, M. H.; Wang, P.; Huang, X. K.; Xu, J.; Hu, Z. Y.; Zhu, Y. J.; Han, L. Y. n-type doping and energy states tuning in CH3NH3Pb1-xSb2x/3I3 perovskite solar cells. ACS Energy Lett. 2016, 1, 535-541.
[41]
Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692-3696.
[42]
Zhang, D. D.; Eaton, S. W.; Yu, Y.; Dou, L. T.; Yang, P. D. Solution- phase synthesis of cesium lead halide perovskite nanowires. J. Am. Chem. Soc. 2015, 137, 9230-9233.
[43]
Zhang, A. D.; Dong, C. Q.; Ren, J. C. Tuning blinking behavior of highly luminescent cesium lead halide nanocrystals through varying halide composition. J. Phys. Chem. C 2017, 121, 13314-13323.
[44]
Huang, L.; Gao, Q. G.; Sun, L. D.; Dong, H.; Shi, S.; Cai, T.; Liao, Q.; Yan, C. H. Composition-graded cesium lead halide perovskite nanowires with tunable dual-color lasing performance. Adv. Mater. 2018, 30, 1800596.
[45]
Wang, Y.; Li, X. M.; Zhao, X.; Xiao, L.; Zeng, H. B.; Sun, H. D. Nonlinear absorption and low-threshold multiphoton pumped stimulated emission from all-inorganic perovskite nanocrystals. Nano Lett. 2016, 16, 448-453.
[46]
Pan, D. X.; Fu, Y. P.; Chen, J.; Czech, K. J.; Wright, J. C.; Jin, S. Visualization and studies of ion-diffusion kinetics in cesium lead bromide perovskite nanowires. Nano Lett. 2018, 18, 1807-1813.
[47]
Wang, Y. L.; Guan, X.; Li, D. H.; Cheng, H. C.; Duan, X. D.; Lin, Z. Y.; Duan, X. F. Chemical vapor deposition growth of single-crystalline cesium lead halide microplatelets and heterostructures for optoelectronic applications. Nano Res. 2017, 10, 1223-1233.
[48]
Cha, H.; Bae, S.; Jung, H.; Ko, M. J.; Jeon, H. Single-mode distributed feedback laser operation in solution-processed halide perovskite alloy system. Adv. Opt. Mater. 2017, 5, 1700545.
[49]
Guo, P. F.; Hossain, M. K.; Shen, X.; Sun, H. B.; Yang, W. C.; Liu, C. P.; Ho, C. Y.; Kwok, C. K.; Tsang, S. W.; Luo, Y. S. et al. Room- temperature red-green-blue whispering-gallery mode lasing and white-light emission from cesium lead halide perovskite (CsPbX3, X = Cl, Br, I) Microstructures. Adv. Opt. Mater. 2018, 6, 1700993.
[50]
Ha, S. T.; Su, R.; Xing, J.; Zhang, Q.; Xiong, Q. H. Metal halide perovskite nanomaterials: Synthesis and applications. Chem. Sci. 2017, 8, 2522-2536.
[51]
Tavakoli, M. M.; Gu, L. L.; Gao, Y.; Reckmeier, C.; He, J; Rogach, A. L; Yao, Y.; Fan, Z. Y. Fabrication of efficient planar perovskite solar cells using a one-step chemical vapor deposition method. Sci. Rep. 2015, 5, 14083.
[52]
Kumar, S.; Sahare, P. D.; Kumar, S. Optimization of the CVD parameters for ZnO nanorods growth: Its photoluminescence and field emission properties. Mater. Res. Bull. 2018, 105, 237-245.
[53]
Meyers, J. K.; Kim, S.; Hill, D. J.; Cating, E. E. M.; Williams, L. J.; Kumbhar, A. S.; McBride, J. R.; Papanikolas, J. M.; Cahoon, J. F. Self-catalyzed vapor-liquid-solid growth of lead halide nanowires and conversion to hybrid perovskites. Nano Lett. 2017, 17, 7561-7568.
[54]
Ha, S. T.; Liu, X. F.; Zhang, Q.; Giovanni, D.; Sum, T. C.; Xiong, Q. H. Synthesis of organic-inorganic lead halide perovskite nanoplatelets: Towards high-performance perovskite solar cells and optoelectronic devices. Adv. Opt. Mater. 2014, 2, 838-844.
[55]
Xing, J.; Liu, X. F.; Zhang, Q.; Ha, S. T.; Yuan, Y. W.; Shen, C.; Sum, T. C.; Xiong, Q. H. Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers. Nano Lett. 2015, 15, 4571-4577.
[56]
Møller, C. K. Crystal structure and photoconductivity of casium plumbohalides. Nature 1958, 182, 1436.
[57]
Zhou, Y. Y.; Zhou, Z. M.; Chen, M.; Zong, Y. X.; Huang, J. S.; Pang, S. P.; Padture, N. P. Doping and alloying for improved perovskite solar cells. J. Mater. Chem. A 2016, 4, 17623-17635.
[58]
Zhao, Y. X.; Zhu, K. Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chem. Soc. Rev. 2016, 45, 655-689.
[59]
Liu, M. Z.; Johnston, M. B.; Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501, 395-398.
[60]
Ono, L. K.; Wang, S. H.; Kato, Y.; Raga, S. R.; Qi, Y. B. Fabrication of semi-transparent perovskite films with centimeter-scale superior uniformity by the hybrid deposition method. Energy Environ. Sci. 2014, 7, 3989-3993.
[61]
Paul, T.; Chatterjee, B. K.; Maiti, S.; Sarkar, S.; Besra, N.; Das, B. K.; Panigrahi, K. J.; Thakur, S.; Ghorai, U. K.; Chattopadhyay, K. K. Tunable cathodoluminescence over the entire visible window from all-inorganic perovskite CsPbX3 1D architecture. J. Mater. Chem. C 2018, 6, 3322-3333.
[62]
Zhang, H. C.; Fu, X.; Tang, Y.; Wang, H.; Zhang, C. F.; Yu, W. W.; Wang, X. Y.; Zhang, Y.; Xiao, M. Phase segregation due to ion migration in all-inorganic mixed-halide perovskite nanocrystals. Nat. Commun. 2019, 10, 1088.
[63]
Sun, L. F.; Zhang, X. M.; Liu, F. C.; Shen, Y. D.; Fan, X. F.; Zheng, S. J.; Thong, J. T. L.; Liu, Z.; Yang, S. A., Yang, H. Y. Vacuum level dependent photoluminescence in chemical vapor deposition-grown monolayer MoS2. Sci. Rep. 2017, 7, 16714.
[64]
Wang, X. H.; Ning, J. Q.; Zheng, C. C.; Zhu, B. R.; Xie, L.; Wu, H. S.; Xu, S. J. Photoluminescence and Raman mapping characterization of WS2 monolayers prepared using top-down and bottom-up methods. J. Mater. Chem. C 2015, 3, 2589-2592.
[65]
Barker, A. J.; Sadhanala, A.; Deschler, F.; Gandini, M.; Senanayak, S. P.; Pearce, P. M.; Mosconi, E.; Pearson, A. J.; Wu, Y.; Srimath Kandada, A. R.; et al. Defect-assisted photoinduced halide segregation in mixed-halide perovskite thin films. ACS Energy Lett. 2017, 2, 1416-1424.
[66]
Brennan, M. C.; Draguta, S.; Kamat, P. V.; Kuno, M. Light-induced anion phase segregation in mixed halide perovskites. ACS Energy Lett. 2018, 3, 204-213.
[67]
Bush, K. A.; Frohna, K.; Prasanna, R.; Beal, R. E.; Leijtens, T.; Swifter, S. A.; McGehee, M. D. Compositional engineering for efficient wide band gap perovskites with improved stability to photoinduced phase segregation. ACS Energy Lett. 2018, 3, 428-435.
[68]
Zhang, Q.; Su, R.; Liu, X. F.; Xing, J.; Sum, T. C.; Xiong, Q. H. High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets. Adv. Funct. Mater. 2016, 26, 6238-6245.
[69]
Zhao, C. Y.; Tian, W. M.; Liu, J. X.; Sun, Q.; Luo, J. J.; Yuan, H.; Gai, B. D.; Tang, J.; Guo, J. W.; Jin, S. Y. Stable two-photon pumped amplified spontaneous emission from millimeter-sized CsPbBr3 single crystals. J. Phys. Chem. Lett. 2019, 10, 2357-2362.
[70]
Zhuang, X. J.; Ouyang, Y.; Wang, X. X.; Pan, A. L. Multicolor semiconductor lasers. Adv. Opt. Mater. 2019, 7, 1900071.
[71]
He, H. J.; Ma, E.; Chen, X. Y.; Yang, D. R.; Chen, B. L.; Qian, G. D. Single crystal perovskite microplate for high-order multiphoton excitation. Small Methods 2019, 3, 1900396.
[72]
Wang, X. X.; Zhou, H.; Yuan, S. P.; Zheng, W. H.; Jiang, Y.; Zhuang, X. J.; Liu, H. J.; Zhang, Q. L.; Zhu, X. L.; Wang, X. et al. Cesium lead halide perovskite triangular nanorods as high-gain medium and effective cavities for multiphoton-pumped lasing. Nano Res. 2017, 10, 3385-3395.
Nano Research
Pages 2939-2949
Cite this article:
Hossain MK, Guo P, Qarony W, et al. Controllable optical emission wavelength in all-inorganic halide perovskite alloy microplates grown by two-step chemical vapor deposition. Nano Research, 2020, 13(11): 2939-2949. https://doi.org/10.1007/s12274-020-2951-1
Topics:

724

Views

21

Crossref

N/A

Web of Science

21

Scopus

0

CSCD

Altmetrics

Received: 18 April 2020
Revised: 22 June 2020
Accepted: 24 June 2020
Published: 27 July 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return