AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Electrocatalytic N2 reduction to NH3 with high Faradaic efficiency enabled by vanadium phosphide nanoparticle on V foil

Peipei Wei1,§Qin Geng1,§Ali Imran Channa1Xin Tong1Yongsong Luo1Siyu Lu2Guang Chen3Shuyan Gao4Zhiming Wang1( )Xuping Sun1( )
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
School of Materials Science and Engineering, Henan Normal University, Xinxiang 453007, China

§ Peipei Wei and Qin Geng contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

To develop highly efficient electrochemical catalysts for N2 fixation is important to sustainable ambient NH3 production through the N2 reduction reaction (NRR). Herein, we demonstrate the development of vanadium phosphide nanoparticle on V foil as a high- efficiency and stable catalyst for ambient NH3 production with excellent selectivity. The high Faradaic efficiency of 22% with a large NH3 yield of 8.35 × 10-11 mol·s-1·cm-2 was obtained at 0 V vs. the reversible hydrogen electrode in acid solution, superior to all previously studied V-based NRR catalysts. Density functional theory calculations are also utilized to have an insight into the catalytic mechanism.

Electronic Supplementary Material

Download File(s)
12274_2020_2956_MOESM1_ESM.pdf (2.8 MB)

References

[1]
Schlögl, R. Catalytic synthesis of ammonia—A “never-ending story”. Angew. Chem., Int. Ed. 2003, 42, 2004-2008.
[2]
Rosca, V.; Duca, M.; De Groot, M. T.; Koper, M. T. M. Nitrogen cycle electrocatalysis. Chem. Rev. 2009, 109, 2209-2244.
[3]
Klerke, A.; Christensen, C. H.; Nørskov, J. K.; Vegge, T. Ammonia for hydrogen storage: Challenges and opportunities. J. Mater. Chem. 2008, 18, 2304-2310.
[4]
Nielsen, A. Ammonia: Catalysis and Manufacture; Springer-Verlag: Berlin, 1995; pp 199-308.
[5]
Gao, S. Y.; Zhu, Y. Z.; Chen, Y.; Tian, M.; Yang, Y. J.; Jiang, T.; Wang, Z. L. Self-power electroreduction of N2 into NH3 by 3D printed triboelectric nanogenerators. Mater. Today 2019, 28, 17-24.
[6]
Shipman, M. A.; Symes, M. D. Recent progress towards the electrosynthesis of ammonia from sustainable resources. Catal. Today 2017, 286, 57-68.
[7]
Guo, C. X.; Ran, J. R.; Vasileff, A.; Qiao, S. Z. Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. Energy Environ. Sci. 2018, 11, 45-56.
[8]
Zhu, X. J.; Mou, S. Y.; Peng, Q. L.; Liu, Q.; Luo, Y. L.; Chen, G.; Gao, S. Y.; Sun, X. P. Aqueous electrocatalytic N2 reduction for ambient NH3 synthesis: Recent advances in catalyst development and performance improvement. J. Mater. Chem. A 2020, 8, 1545-1556.
[9]
Li, S. J.; Bao, D.; Shi, M. M.; Wulan, B. R.; Yan, J. M.; Jiang, Q. Amorphizing of Au nanoparticles by CeOx-RGO hybrid support towards highly efficient electrocatalyst for N2 reduction under ambient conditions. Adv. Mater. 2017, 29, 1700001.
[10]
Qin, Q.; Heil, T.; Antonietti, M.; Oschatz, M. Single-site gold catalysts on hierarchical N-doped porous noble carbon for enhanced electrochemical reduction of nitrogen. Small Methods 2018, 2, 1800202.
[11]
Huang, H. H.; Xia, L.; Shi, X. F.; Asiri, A. M.; Sun, X. P. Ag nanosheets for efficient electrocatalytic N2 fixation to NH3 under ambient conditions. Chem. Commun. 2018, 54, 11427-11430.
[12]
Wang, J.; Yu, L.; Hu, L.; Chen, G.; Xin, H. L.; Feng, X. F. Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential. Nat. Commun. 2018, 9, 1795.
[13]
Kordali, V.; Kyriacou, G.; Lambrou, C. Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell. Chem. Commun. 2000, 1673-1674.
[14]
Zhao, R. B.; Liu, C. W.; Zhang, X. X.; Zhu, X. J.; Wei, P. P.; Ji, L.; Guo, Y. B.; Gao, S. Y.; Luo, Y. L.; Wang, Z. M. et al. An ultrasmall Ru2P nanoparticles-reduced graphene oxide hybrid: An efficient electrocatalyst for NH3 synthesis under ambient conditions. J. Mater. Chem. A 2020, 8, 77-81.
[15]
Cao, N.; Chen, Z.; Zang, K. T.; Xu, J.; Zhong, J.; Luo, J.; Xu, X.; Zheng, G. F. Doping strain induced Bi-Ti3+ pairs for efficient N2 activation and electrocatalytic fixation. Nat. Commun. 2019, 10, 2877.
[16]
Xia, L.; Yang, J. J.; Wang, H. B.; Zhao, R. B.; Chen, H. Y.; Fang, W. H.; Asiri, A. M.; Xie, F. Y.; Cui, G. L.; Sun, X. P. Sulfur-doped graphene for efficient electrocatalytic N2-to-NH3 fixation. Chem. Commun. 2019, 55, 3371-3374.
[17]
Lv, C.; Yan, C. S.; Chen, G.; Ding, Y.; Sun, J. X.; Zhou, Y. S.; Yu, G. H. An amorphous noble-metal-free electrocatalyst that enables nitrogen fixation under ambient conditions. Angew. Chem., Int. Ed. 2018, 57, 6073-6076.
[18]
Wang, F. Y.; Lv, X.; Zhu, X. J.; Du, J.; Lu, S. Y.; Alshehri, A. A.; Alzahrani, K. A.; Zheng, B. Z.; Sun, X. P. Bi nanodendrites for efficient electrocatalytic N2 fixation to NH3 under ambient conditions. Chem. Commun. 2020, 56, 2107-2110.
[19]
Chu, K.; Liu, Y. P.; Li, Y. B.; Zhang, H.; Tian, Y. Efficient electrocatalytic N2 reduction on CoO quantum dots. J. Mater. Chem. A 2019, 7, 4389-4394.
[20]
Li, Y. F.; Li, T. S.; Zhu, X. J.; Alshehri, A. A.; Alzahrani, K. A.; Lu, S. Y.; Sun, X. P. DyF3: An efficient electrocatalyst for N2 fixation to NH3 under ambient conditions. Chem.—Asian J. 2020, 15, 487-489.
[21]
Wang, Y.; Shi, M. M.; Bao, D.; Meng, F. L.; Zhang, Q.; Zhou, Y. T.; Liu, K. H.; Zhang, Y.; Wang, J. Z.; Chen, Z. W. et al. Generating defect-rich bismuth for enhancing the rate of nitrogen electroreduction to ammonia. Angew. Chem., Int. Ed. 2019, 58, 9464-9469.
[22]
Li, C. B.; Ma, D. W.; Mou, S. Y.; Luo, Y. S.; Ma, B. Y.; Lu, S. Y.; Cui, G. W.; Li, Q.; Liu, Q.; Sun, X. P. Porous LaFeO3 nanofiber with oxygen vacancies as an efficient electrocatalyst for N2 conversion to NH3 under ambient conditions. J. Energy Chem. 2020, 50, 402-408.
[23]
Fang, Y. F.; Liu, Z. C.; Han, J. R.; Jin, Z. Y.; Han, Y. Q.; Wang, F. X.; Niu, Y. S.; Wu, Y. P.; Xu, Y. H. High-performance electrocatalytic conversion of N2 to NH3 using oxygen-vacancy-rich TiO2 in situ grown on Ti3C2Tx Mxene. Adv. Energy Mater. 2019, 9, 1803406.
[24]
Xu, T.; Ma, D. W.; Li, C. B.; Liu, Q.; Lu, S. Y.; Asiri, A. M.; Yang, C.; Sun, X. P. Ambient electrochemical NH3 synthesis from N2 and water enabled by ZrO2 nanoparticle. Chem. Commun. 2020, 56, 3673-3676.
[25]
Chu, K.; Liu, Y. P.; Li, Y. B.; Wang, J.; Zhang, H. Electronically coupled SnO2 quantum dots and graphene for efficient nitrogen reduction reaction. ACS Appl. Mater. Interfaces 2019, 11, 31806-31815.
[26]
Xia, L.; Li, B. H.; Zhang, Y.; Zhang, R.; Ji, L.; Chen, H. Y.; Cui, G. W.; Zheng, H. G.; Sun, X. P.; Xie, F. Y. et al. Cr2O3 nanoparticle-reduced graphene oxide hybrid: A highly active electrocatalyst for N2 reduction at ambient conditions. Inorg. Chem. 2019, 58, 2257-2260.
[27]
Qin, Q.; Zhao, Y.; Schmallegger, M.; Heil, T.; Schmidt, J.; Walczak, R.; Gescheidt-Demner, G.; Jiao. H. J.; Oschatz, M. Enhanced electrocatalytic N2 reduction via partial anion substitution in titanium oxide-carbon composites. Angew. Chem., Int. Ed. 2019, 58, 13101-13106.
[28]
Li, C. B.; Yu, J. L.; Yang, L.; Zhao, J. X.; Kong, W. H.; Wang, T.; Asiri, A. M.; Li, Q.; Sun, X. P. Spinel LiMn2O4 nanofiber: An efficient electrocatalyst for N2 reduction to NH3 under ambient conditions. Inorg. Chem. 2019, 58, 9597-9601.
[29]
Jin, H. Y.; Li, L. Q.; Liu, X.; Tang, C.; Xu, W. J.; Chen, S. M.; Song, L.; Zheng, Y.; Qiao, S. Z. Nitrogen vacancies on 2D layered W2N3: A stable and efficient active site for nitrogen reduction reaction. Adv. Mater. 2019, 31, 1902709.
[30]
Zhang, L. L.; Ding, L. X.; Chen, G. F.; Yang, X. F.; Wang, H. H. Ammonia synthesis under ambient conditions: Selective electroreduction of dinitrogen to ammonia on black phosphorus nanosheets. Angew. Chem., Int. Ed. 2019, 58, 2612-2616.
[31]
Chu, K.; Liu, Y. P.; Li, Y. B.; Guo, Y. L.; Tian, Y.; Zhang, H. Multi-functional Mo-doping in MnO2 nanoflowers toward efficient and robust electrocatalytic nitrogen fixation. Appl. Catal. Environ 2020, 264, 118525.
[32]
Cheng, H.; Cui, P. X.; Wang, F. R.; Ding, L. X.; Wang, H. H. High efficiency electrochemical nitrogen fixation achieved with a lower pressure reaction system by changing the chemical equilibrium. Angew. Chem., Int. Ed. 2019, 58, 15541-15547.
[33]
Zhao, C. J.; Zhang, S. B.; Han, M. M.; Zhang, X.; Liu, Y. Y.; Li, W. Y.; Chen, C.; Wang, G. Z.; Zhang, H. M.; Zhao, H. J. Ambient electrosynthesis of ammonia on a biomass-derived nitrogen-doped porous carbon electrocatalyst: Contribution of pyridinic nitrogen. ACS Energy Lett. 2019, 4, 377-383.
[34]
Xiong, W.; Cheng, X.; Wang, T.; Luo, Y. S.; Feng, J.; Lu, S. Y.; Asiri, A. M.; Li, W.; Jiang, Z. J.; Sun, X. P. Co3(hexahydroxytriphenylene)2: A conductive metal-organic framework for ambient electrocatalytic N2 reduction to NH3. Nano Res. 2020, 13, 1008-1012.
[35]
Chu, K.; Liu, Y. P.; Li, Y. B.; Guo, Y. L.; Tian, Y. Two-dimensional (2D)/2D interface engineering of a MoS2/C3N4 heterostructure for promoted electrocatalytic nitrogen fixation. ACS Appl. Mater. Interfaces 2020, 12, 7081-7090.
[36]
Eady, R. R. Structure-function relationships of alternative nitrogenases. Chem. Rev. 1996, 96, 3013-3030.
[37]
Bhattacharya, P.; Prokopchuk, D. E.; Mock, M. T. Exploring the role of pendant amines in transition metal complexes for the reduction of N2 to hydrazine and ammonia. Coord. Chem. Rev. 2017, 334, 67-83.
[38]
Zhang, R.; Han, J. R.; Zheng, B. Z.; Shi, X. F.; Asiri, A. M.; Sun, X. P. Metal-organic framework-derived shuttle-like V2O3/C for electrocatalytic N2 reduction under ambient conditions. Inorg. Chem. Front. 2019, 6, 391-395.
[39]
Zhang, R.; Guo, H. R.; Yang, L.; Wang, Y.; Niu, Z. G; Huang, H.; Chen, H. Y.; Xia, L.; Li, T. S.; Shi, X. F. et al. Electrocatalytic N2 fixation over hollow VO2 microspheres at ambient conditions. ChemElectroChem 2019, 6, 1014-1018.
[40]
Feng, J.; Zhu, X. J.; Chen, Q. Y.; Xiong, W.; Cheng, X.; Luo, Y. L.; Alshehri, A. A.; Alzahrani, K. A.; Jiang, Z. J.; Li, W. Ultrasmall V8C7 nanoparticles embedded in conductive carbon for efficient electrocatalytic N2 reduction toward ambient NH3 production. J. Mater. Chem. A 2019, 7, 26227-26230.
[41]
Yang, X.; Kattel, S.; Nash, J.; Chang, X. X.; Lee, J. H.; Yan, Y. S.; Chen, J. G.; Xu, B. J. Quantification of active sites and elucidation of the reaction mechanism of the electrochemical nitrogen reduction reaction on vanadium nitride. Angew. Chem., Int. Ed. 2019, 131, 13906-13910.
[42]
Oyama, S. T.; Gott, T.; Zhao, H. Y.; Lee, Y. K. Transition metal phosphide hydroprocessing catalysts: A review. Catal. Today 2009, 143, 94-107.
[43]
Tian, J. Q.; Liu, Q.; Asiri, A. M.; Sun, X. P. Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0-14. J. Am. Chem. Soc. 2014, 136, 7587-7590.
[44]
Carenco, S.; Portehault, D.; Boissière, C.; Mèzailles, N.; Sanchez, C. Nanoscaled metal borides and phosphides: Recent developments and perspectives. Chem. Rev. 2013, 113, 7981-8065.
[45]
Woo, K.; Lee, K.; Kovnir, K. BP: Synthesis and properties of boron phosphide. Mater. Res. Express 2016, 3, 074003.
[46]
Zhu, D.; Zhang, L. H.; Ruther, R. E.; Hamers, R. J. Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction. Nat. Mater. 2013, 12, 836-841.
[47]
Watt, G. W.; Chrisp, J. D. Spectrophotometric method for determination of hydrazine. Anal. Chem. 1952, 24, 2006-2008.
[48]
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169.
[49]
Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758.
[50]
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953.
[51]
Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671.
[52]
Perdew, J. P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992, 45, 13244.
[53]
Peterson, A. A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Nørskov, J. K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 2010, 3, 1311-1315.
[54]
Werfel, F.; Dräger, G.; Brümmer, O. Electronic structure investigation of metallic vanadium by XS and XPS. Phys. Status Solidi (B) 1977, 83, 257-262.
[55]
Yang, G. X.; Chen, Y.; Zhou, Y. M.; Tang, Y. W.; Lu, T. H. Preparation of carbon supported Pd-P catalyst with high content of element phosphorus and its electrocatalytic performance for formic acid oxidation. Electrochem. Commun. 2010, 12, 492-495.
[56]
Demeter, M.; Neumann, M.; Reichelt, W. Mixed-valence vanadium oxides studied by XPS. Surf. Sci. 2000, 454-456, 41-44.
[57]
Hu, P.; Zhu, T.; Ma, J. X.; Cai, C. C.; Hu, G. W.; Wang, X. P.; Liu, Z.; Zhou, L.; Mai, L. Q. Porous V2O5 microspheres: A high-capacity cathode material for aqueous zinc-ion batteries. Chem. Commun. 2019, 55, 8486-8489.
[58]
Goncalves, A. M.; Seitz, O.; Eb, A.; Mathieu, C.; Herlem, M.; Etcheberry, A. A significant anodic passivation of n and p-InP surfaces in liquid ammonia: First evidence of stable phosphorus-nitrogen bonds. ECS Trans. 2007, 6, 461-468.
[59]
Franke, R.; Chassé, T.; Streubel, P.; Meisel, A. Auger parameters and relaxation energies of phosphorus in solid compounds. J. Electron Spectrosc. Relat. Phenom. 1991, 56, 381-388.
[60]
Liu, T. T.; Xie, L. S.; Yang, J. H.; Kong, R. M.; Du, G.; Asiri, A. M.; Sun, X. P.; Chen, L. Self-standing CoP nanosheets array: A three- dimensional bifunctional catalyst electrode for overall water splitting in both neutral and alkaline media. ChemElectroChem 2017, 4, 1840-1845.
[61]
Liu, T. T.; Liu, D. N.; Qu, F. L.; Wang, D. X.; Zhang, L.; Ge, R. X.; Hao, S.; Ma, Y. J.; Du, G.; Asiri, A. M. et al. Enhanced electrocatalysis for energy-efficient hydrogen production over CoP catalyst with nonelectroactive Zn as a promoter. Adv. Energy Mater. 2017, 7, 1700020.
[62]
Qiu, W. B.; Xie, X. Y.; Qiu, J. D.; Fang, W. H.; Liang, R. P.; Ren, X.; Ji, X. Q.; Cui, G. W.; Asiri, A. M.; Cui, G. L. et al. High-performance artificial nitrogen fixation at ambient conditions using a metal-free electrocatalyst. Nat. Commun. 2018, 9, 3485.
Nano Research
Pages 2967-2972
Cite this article:
Wei P, Geng Q, Channa AI, et al. Electrocatalytic N2 reduction to NH3 with high Faradaic efficiency enabled by vanadium phosphide nanoparticle on V foil. Nano Research, 2020, 13(11): 2967-2972. https://doi.org/10.1007/s12274-020-2956-9
Topics:

806

Views

49

Crossref

N/A

Web of Science

47

Scopus

5

CSCD

Altmetrics

Received: 23 April 2020
Revised: 12 June 2020
Accepted: 25 June 2020
Published: 30 July 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return