AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Recent progresses of NMOS and CMOS logic functions based on two-dimensional semiconductors

Lingan KongYang ChenYuan Liu ( )
Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
Show Author Information

Graphical Abstract

Abstract

Metal-oxide-semiconductor field effect transistors (MOSFET) based on two-dimensional (2D) semiconductors have attracted extensive attention owing to their excellent transport properties, atomically thin geometry, and tunable bandgaps. Besides improving the transistor performance of individual device, lots of efforts have been devoted to achieving 2D logic functions or integrated circuit towards practical application. In this review, we discussed the recent progresses of 2D-based logic circuit. We will first start with the different methods for realization of n-type metal-oxide-semiconductor (NMOS)-only (or p-type metal-oxide-semiconductor (PMOS)-only) logic circuit. Next, various device polarity control and complementary-metal-oxide-semiconductor (CMOS) approaches are summarized, including utilizing different 2D semiconductors with intrinsic complementary doping, charge transfer doping, contact engineering, and electrostatics doping. We will discuss the merits and drawbacks of each approach, and lastly conclude with a short perspective on the challenges and future developments of 2D logic circuit.

References

[1]
B. Radisavljevic,; A. Radenovic,; J. Brivio,; V. Giacometti,; A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147-150.
[2]
Q. H. Wang,; K. Kalantar-Zadeh,; A. Kis,; J. N. Coleman,; M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699-712.
[3]
G. Fiori,; F. Bonaccorso,; G. Iannaccone,; T. Palacios,; D. Neumaier,; A. Seabaugh,; S. K. Banerjee,; L. Colombo, Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768-779.
[4]
M. Chhowalla,; D. Jena,; H. Zhang, Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 2016, 1, 16052.
[5]
Y. Liu,; X. D. Duan,; Y. Huang,; X. F. Duan, Two-dimensional transistors beyond graphene and TMDCs. Chem. Soc. Rev. 2018, 47, 6388-6409.
[6]
L. Li,; W. Han,; L. J. Pi,; P. Niu,; J. B. Han,; C. L. Wang,; B. Su,; H. Q. Li,; J. Xiong,; Y. Bando, et al. Emerging in-plane anisotropic two-dimensional materials. InfoMat 2019, 1, 54-73.
[7]
R. Kappera,; D. Voiry,; S. E. Yalcin,; B. Branch,; G. Gupta,; A. D. Mohite,; M. Chhowalla, Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 2014, 13, 1128-1134.
[8]
Y. Liu,; J. Guo,; Y. C. Wu,; E. B. Zhu,; N. O. Weiss,; Q. Y. He,; H. Wu,; H. C. Cheng,; Y. Xu,; I. Shakir, et al. Pushing the performance limit of sub-100 nm molybdenum disulfide transistors. Nano Lett. 2016, 16, 6337-6342.
[9]
S. B. Desai,; S. R. Madhvapathy,; A. B. Sachid,; J. P. Llinas,; Q. X. Wang,; G. H. Ahn,; G. Pitner,; M. J. Kim,; J. Bokor,; C. M. Hu, et al. MoS2 transistors with 1-nanometer gate lengths. Science 2016, 354, 99-102.
[10]
R. Cheng,; S. Jiang,; Y. Chen,; Y. Liu,; N. Weiss,; H. C. Cheng,; H. Wu,; Y. Huang,; X. F. Duan, Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics. Nat. Commun. 2014, 5, 5143.
[11]
J. Li,; X. D. Yang,; Y. Liu,; B. L. Huang,; R. X. Wu,; Z. W. Zhang,; B. Zhao,; H. F. Ma,; W. Q. Dang,; Z. Wei, et al. General synthesis of two-dimensional van der Waals heterostructure arrays. Nature 2020, 579, 368-374.
[12]
X. F. Li,; Z. Q. Yu,; X. Xiong,; T. Y. Li,; T. T. Gao,; R. S. Wang,; R. Huang,; Y. Q. Wu, High-speed black phosphorus field-effect transistors approaching ballistic limit. Sci. Adv. 2019, 5, eaau3194.
[13]
Wikipedia. The International Technology Roadmap for Semiconductors [Online]. https://en.academic.ru/dic.nsf/enwiki/1561398 (accessed Apr 25, 2020).
[14]
C. D. English,; G. Shine,; V. E. Dorgan,; K. C. Saraswat,; E. Pop, Improved contacts to MoS2 transistors by ultra-high vacuum metal deposition. Nano Lett. 2016, 16, 3824-3830.
[15]
R. H. Yan,; A. Ourmazd,; K. F. Lee, Scaling the Si MOSFET: From bulk to SOI to bulk. IEEE Trans. Electron Dev. 1992, 39, 1704-1710.
[16]
Z. Y. Lin,; Y. Liu,; U. Halim,; M. N. Ding,; Y. Y. Liu,; Y. L. Wang,; C. C. Jia,; P. Chen,; X. D. Duan,; C. Wang, et al. Solution-processable 2D semiconductors for high-performance large-area electronics. Nature 2018, 562, 254-258.
[17]
H. Yu,; M. Z. Liao,; W. J. Zhao,; G. D. Liu,; X. J. Zhou,; Z. Wei,; X. Z. Xu,; K. H. Liu,; Z. H. Hu,; K. Deng, et al. Wafer-scale growth and transfer of highly-oriented monolayer MoS2 continuous films. ACS Nano 2017, 11, 12001-12007.
[18]
S. Wachter,; D. K. Polyushkin,; O. Bethge,; T. Mueller, A microprocessor based on a two-dimensional semiconductor. Nat. Commun. 2017, 8, 14948.
[19]
Z. H. Zhang,; Z. W. Wang,; T. Shi,; C. Bi,; F. Rao,; Y. M. Cai,; Q. Liu,; H. Q. Wu,; P. Zhou, Memory materials and devices: From concept to application. InfoMat 2020, 2, 261-290.
[20]
L. L. Yu,; D. El-Damak,; U. Radhakrishna,; X. Ling,; A. Zubair,; Y. X. Lin,; Y. H. Zhang,; M. H. Chuang,; Y. H. Lee,; D. Antoniadis, et al. Design, modeling, and fabrication of chemical vapor deposition grown MoS2 circuits with E-mode FETs for large-area electronics. Nano Lett. 2016, 16, 6349-6356.
[21]
Z. H. Cheng,; H. Abuzaid,; Y. F. Yu,; F. Zhang,; Y. L. Li,; S. G. Noyce,; N. X. Williams,; Y. C. Lin,; J. L. Doherty,; C. G. Tao, et al. Convergent ion beam alteration of 2D materials and metal-2D interfaces. 2D Mater. 2019, 6, 034005.
[22]
V. Iberi,; L. B. Liang,; A. V. Ievlev,; M. G. Stanford,; M. W. Lin,; X. F. Li,; M. Mahjouri-Samani,; S. Jesse,; B. G. Sumpter,; S. V. Kalinin, et al. Nanoforging single layer MoSe2 through defect engineering with focused helium ion beams. Sci. Rep. 2016, 6, 30481.
[23]
M. G. Stanford,; P. R. Pudasaini,; A. Belianinov,; N. Cross,; J. H. Noh,; M. R. Koehler,; D. G. Mandrus,; G. Duscher,; A. J. Rondinone,; I. N. Ivanov, et al. Focused helium-ion beam irradiation effects on electrical transport properties of few-layer WSe2: Enabling nanoscale direct write homo-junctions. Sci. Rep. 2016, 6, 27276.
[24]
W. Shi,; S. Kahn,; L. L. Jiang,; S. Y. Wang,; H. Z. Tsai,; D. Wong,; T. Taniguchi,; K. Watanabe,; F. Wang,; M. F. Crommie, et al. Reversible writing of high-mobility and high-carrier-density doping patterns in two-dimensional van der Waals heterostructures. Nat. Electron. 2020, 3, 99-105.
[25]
S. Bertolazzi,; S. Bonacchi,; G. J. Nan,; A. Pershin,; D. Beljonne,; P. Samori, Engineering chemically active defects in monolayer MoS2 transistors via ion-beam irradiation and their healing via vapor deposition of alkanethiols. Adv. Mater. 2017, 29, 1606760.
[26]
Y. C. Lin,; D. O. Dumcenco,; Y. S. Huang,; K. Suenaga, Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat. Nanotechnol. 2014, 9, 391-396.
[27]
E. Sutter,; Y. Huang,; H. P. Komsa,; M. Ghorbani-Asl,; A. V. Krasheninnikov,; P. Sutter, Electron-beam induced transformations of layered tin dichalcogenides. Nano Lett. 2016, 16, 4410-4416.
[28]
B. Radisavljevic,; M. B. Whitwick,; A. Kis, Integrated circuits and logic operations based on single-layer MoS2. ACS Nano 2011, 5, 9934-9938.
[29]
J. Pu,; K. Funahashi,; C. H. Chen,; M. Y. Li,; L. J. Li,; T. Takenobu, Highly flexible and high-performance complementary inverters of large-area transition metal dichalcogenide monolayers. Adv. Mater. 2016, 28, 4111-4119.
[30]
K. Kang,; S. E. Xie,; L. J. Huang,; Y. M. Han,; P. Y. Huang,; K. F. Mak,; C. J. Kim,; D. Muller,; J. Park, High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 2015, 520, 656-660.
[31]
J. K. Huang,; J. Pu,; C. L. Hsu,; M. H. Chiu,; Z. Y. Juang,; Y. H. Chang,; W. H. Chang,; Y. Iwasa,; T. Takenobu,; L. J. Li, Large-area synthesis of highly crystalline WSe2 monolayers and device applications. ACS Nano 2014, 8, 923-930.
[32]
H. Wang,; L. Yu,; Y. H. Lee,; W. Fang,; A. Hsu,; P. Herring,; M. Chin,; M. Dubey,; L. J. Li,; J. Kong, et al. Large-scale 2D electronics based on single-layer MoS2 grown by chemical vapor deposition. In Proceedings of 2012 International Electron Devices Meeting, San Francisco, CA, USA, 2012, pp 4.6.1-4.6.4.
[33]
Y. Liu,; J. Guo,; E. B. Zhu,; L. Liao,; S. J. Lee,; M. N. Ding,; I. Shakir,; V. Gambin,; Y. Huang,; X. F. Duan, Approaching the Schottky- Mott limit in van der Waals metal-semiconductor junctions. Nature 2018, 557, 696-700.
[34]
Y. Jung,; M. S. Choi,; A. Nipane,; A. Borah,; B. Kim,; A. Zangiabadi,; T. Taniguchi,; K. Watanabe,; W. J. Yoo,; J. Hone, et al. Transferred via contacts as a platform for ideal two-dimensional transistors. Nat. Electron. 2019, 2, 187-194.
[35]
Y. K. Choi,; K. Asano,; N. Lindert,; V. Subramanian,; T. J. King,; J. Bokor,; C. M. Hu, Ultra-thin body SOI MOSFET for deep-sub- tenth micron era. In Proceedings of IEEE International Electron Devices Meeting 1999, Washington, DC, USA, 1999, pp 919-921.
[36]
H. Xu,; H. M. Zhang,; Z. X. Guo,; Y. W. Shan,; S. W. Wu,; J. L. Wang,; W. D. Hu,; H. Q. Liu,; Z. Z. Sun,; C. Luo, et al. High-performance wafer-scale MoS2 transistors toward practical application. Small 2018, 14, 1803465.
[37]
Y. Liu,; H. Wu,; H. C. Cheng,; S. Yang,; E. B. Zhu,; Q. Y. He,; M. N. Ding,; D. H. Li,; J. Guo,; N. O. Weiss, et al. Toward barrier free contact to molybdenum disulfide using graphene electrodes. Nano Lett. 2015, 15, 3030-3034.
[38]
T. Roy,; M. Tosun,; J. S. Kang,; A. B. Sachid,; S. B. Desai,; M. Hettick,; C. C. Hu,; A. Javey, Field-effect transistors built from all two- dimensional material components. ACS Nano 2014, 8, 6259-6264.
[39]
H. J. Chuang,; X. B. Tan,; N. J. Ghimire,; M. M. Perera,; B. Chamlagain,; M. M. C. Cheng,; J. Q. Yan,; D. Mandrus,; D. Tománek,; Z. X. Zhou, High mobility WSe2 p- and n-type field-effect transistors contacted by highly doped graphene for low-resistance contacts. Nano Lett. 2014, 14, 3594-3601.
[40]
L. L. Yu,; Y. H. Lee,; X. Ling,; E. J. G. Santos,; Y. C. Shin,; Y. X. Lin,; M. Dubey,; E. Kaxiras,; J. Kong,; H. Wang, et al. Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics. Nano Lett. 2014, 14, 3055-3063.
[41]
A. Dathbun,; Y. Kim,; S. Kim,; Y. Yoo,; M. S. Kang,; C. Lee,; J. H. Cho, Large-area CVD-grown sub-2 V ReS2 transistors and logic gates. Nano Lett. 2017, 17, 2999-3005.
[42]
M. Zhao,; Y. Ye,; Y. M. Han,; Y. Xia,; H. Y. Zhu,; S. Q. Wang,; Y. Wang,; D. A. Muller,; X. Zhang, Large-scale chemical assembly of atomically thin transistors and circuits. Nat. Nanotechnol. 2016, 11, 954-959.
[43]
X. Ling,; Y. X. Lin,; Q. Ma,; Z. Q. Wang,; Y. Song,; L. L. Yu,; S. X. Huang,; W. J. Fang,; X. Zhang,; A. L. Hsu, et al. Parallel stitching of 2D materials. Adv. Mater. 2016, 28, 2322-2329.
[44]
R. X. Wu,; Q. Y. Tao,; W. Q. Dang,; Y. Liu,; B. Li,; J. Li,; B. Zhao,; Z. W. Zhang,; H. F. Ma,; G. Z. Sun, et al. van der Waals epitaxial growth of atomically thin 2D metals on dangling-bond-free WSe2 and WS2. Adv. Funct. Mater. 2019, 29, 1806611.
[45]
X. L. Xu,; S. Liu,; B. Han,; Y. M. Han,; K. Yuan,; W. J. Xu,; X. H. Yao,; P. Li,; S. Q. Yang,; W. T. Gong, et al. Scaling-up atomically thin coplanar semiconductor-metal circuitry via phase engineered chemical assembly. Nano Lett. 2019, 19, 6845-6852.
[46]
Q. Zhang,; X. F. Wang,; S. H. Shen,; Q. Lu,; X. Z. Liu,; H. Y. Li,; J. Y. Zheng,; C. P. Yu,; X. Y. Zhong,; L. Gu, et al. Simultaneous synthesis and integration of two-dimensional electronic components. Nat. Electron. 2019, 2, 164-170.
[47]
H. Wang,; L. L. Yu,; Y. H. Lee,; Y. M. Shi,; A. Hsu,; M. L. Chin,; L. J. Li,; M. Dubey,; J. Kong,; T. Palacios, Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 2012, 12, 4674-4680.
[48]
P. J. Jeon,; J. S. Kim,; J. Y. Lim,; Y. Cho,; A. Pezeshki,; H. S. Lee,; S. Yu,; S. W. Min,; S. Im, Low power consumption complementary inverters with n-MoS2 and p-WSe2 dichalcogenide nanosheets on glass for logic and light-emitting diode circuits. ACS Appl. Mater. Interfaces 2015, 7, 22333-22340.
[49]
H. Liu,; A. T. Neal,; Z. Zhu,; Z. Luo,; X. F. Xu,; D. Tománek,; P. D. Ye., Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano 2014, 8, 4033-4041.
[50]
A. Pezeshki,; S. H. Hosseini Shokouh,; P. J. Jeon,; I. Shackery,; J. S. Kim,; I. K. Oh,; S. C. Jun,; H. Kim,; S. Im, Static and dynamic performance of complementary inverters based on nanosheet α-MoTe2 p-channel and MoS2 n-channel transistors. ACS Nano 2016, 10, 1118-1125.
[51]
H. Zhang,; C. Li,; J. L. Wang,; W. D. Hu,; D. W. Zhang,; P. Zhou, Complementary logic with voltage zero-loss and nano-Watt power via configurable MoS2/WSe2 gate. Adv. Function. Mater. 2018, 28, 1805171.
[52]
H. Yoo,; S. Hong,; S. On,; H. Ahn,; H. K. Lee,; Y. K. Hong,; S. Kim,; J. J. Kim, Chemical doping effects in multilayer MoS2 and its application in complementary inverter. ACS Appl. Mater. Interfaces 2018, 10, 23270-23276.
[53]
P. K. Srivastava,; Y. Hassan,; Y. Gebredingle,; J. Jung,; B. Kang,; W. J. Yoo,; B. Singh,; C. Lee, Van der Waals broken-gap p-n heterojunction tunnel diode based on black phosphorus and rhenium disulfide. ACS Appl. Mater. Interfaces 2019, 11, 8266-8275.
[54]
Y. J. Gong,; J. H. Lin,; X. L. Wang,; G. Shi,; S. D. Lei,; Z. Lin,; X. L. Zou,; G. L. Ye,; R. Vajtai,; B. I. Yakobson, et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 2014, 13, 1135-1142.
[55]
X. D. Duan,; C. Wang,; J. C. Shaw,; R. Cheng,; Y. Chen,; H. L. Li,; X. P. Wu,; Y. Tang,; Q. L. Zhang,; A. L. Pan, et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 2014, 9, 1024-1030.
[56]
Z. W. Zhang,; P. Chen,; X. D. Duan,; K. T. Zang,; J. Luo,; X. F. Duan, Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science 2017, 357, 788-792.
[57]
P. Chen,; Z. W. Zhang,; X. D. Duan,; X. F. Duan, Chemical synthesis of two-dimensional atomic crystals, heterostructures and superlattices. Chem. Soc. Rev. 2018, 47, 3129-3151.
[58]
J. Lee,; S. Pak,; Y. W. Lee,; Y. Park,; A. R. Jang,; J. Hong,; Y. Cho,; B. Hou,; S. Lee,; H. Y. Jeong, et al. Direct epitaxial synthesis of selective two-dimensional lateral heterostructures. ACS Nano 2019, 13, 13047-13055.
[59]
C. H. Yeh,; Z. Y. Liang,; Y. C. Lin,; H. C. Chen,; T. Fan,; C. H. Ma,; Y. H. Chu,; K. Suenaga,; P. W. Chiu, Graphene-transition metal dichalcogenide heterojunctions for scalable and low-power complementary integrated circuits. ACS Nano 2020, 14, 985-992.
[60]
M. H. Chiu,; H. L. Tang,; C. C. Tseng,; Y. M. Han,; A. Aljarb,; J. K. Huang,; Y. Wan,; J. H. Fu,; X. X. Zhang,; W. H. Chang, et al. Metal-guided selective growth of 2D materials: Demonstration of a bottom-up CMOS inverter. Adv. Mater. 2019, 31, e1900861.
[61]
A. B. Sachid,; M. Tosun,; S. B. Desai,; C. Y. Hsu,; D. H. Lien,; S. R. Madhvapathy,; Y. Z. Chen,; M. Hettick,; J. S. Kang,; Y. P. Zeng, et al. Monolithic 3D CMOS using layered semiconductors. Adv. Mater. 2016, 28, 2547-2554.
[62]
W. J. Yu,; Z. Li,; H. L. Zhou,; Y. Chen,; Y. Wang,; Y. Huang,; X. F. Duan, Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters. Nat. Mater. 2013, 12, 246-252.
[63]
Y. J. Choi,; S. Kim,; H. J. Woo,; Y. J. Song,; Y. Lee,; M. S. Kang,; J. H. Cho, Remote gating of Schottky barrier for transistors and their vertical integration. ACS Nano 2019, 13, 7877-7885.
[64]
L. T. Liu,; Y. Liu,; X. F. Duan, Graphene-based vertical thin film transistors. Sci. China Inf. Sci. in press, .
[65]
Y. Jin,; D. H. Keum,; S. J. An,; J. Kim,; H. S. Lee,; Y. H. Lee, A van der Waals homojunction: Ideal p-n diode behavior in MoSe2. Adv. Mater. 2015, 27, 5534-5540.
[66]
B. S. Tang,; Z. G. Yu,; L. Huang,; J. W. Chai,; S. L. Wong,; J. Deng,; W. F. Yang,; H. Gong,; S. J. Wang,; K. W. Ang, et al. Direct n- to p-type channel conversion in monolayer/few-layer WS2 field-effect transistors by atomic nitrogen treatment. ACS Nano 2018, 12, 2506-2513.
[67]
M. R. Laskar,; D. N. Nath,; L. Ma,; E. W. Lee,; C. H. Lee,; T. Kent,; Z. H. Yang,; R. Mishra,; M. A. Roldan,; J. C. Idrobo, et al. P-type doping of MoS2 thin films using Nb. Appl. Phys. Lett. 2014, 104, 092104.
[68]
J. Suh,; T. E. Park,; D. Y. Lin,; D. Y. Fu,; J. Park,; H. J. Jung,; Y. B. Chen,; C. Ko,; C. Jang,; Y. H. Sun, et al. Doping against the native propensity of MoS2: Degenerate hole doping by cation substitution. Nano Lett. 2014, 14, 6976-6982.
[69]
J. Gao,; Y. D. Kim,; L. B. Liang,; J. C. Idrobo,; P. Chow,; J. W. Tan,; B. C. Li,; L. Li,; B. G. Sumpter,; T. M. Lu, et al. Transition-metal substitution doping in synthetic atomically thin semiconductors. Adv. Mater. 2016, 28, 9735-9743.
[70]
K. H. Zhang,; B. M. Bersch,; J. Joshi,; R. Addou,; C. R. Cormier,; C. X. Zhang,; K. Xu,; N. C. Briggs,; K. Wang,; S. Subramanian, et al. Tuning the electronic and photonic properties of monolayer MoS2 via in situ Rhenium substitutional doping. Adv. Funct. Mater. 2018, 28, 1706950.
[71]
X. J. Zhang,; Z. B. Shao,; X. H. Zhang,; Y. Y. He,; J. S. Jie, Surface charge transfer doping of low-dimensional nanostructures toward high-performance nanodevices. Adv. Mater. 2016, 28, 10409-10442.
[72]
P. D. Zhao,; D. Kiriya,; A. Azcatl,; C. X. Zhang,; M. Tosun,; Y. S. Liu,; M. Hettick,; J. S. Kang,; S. McDonnell,; S. KC, et al. Air stable p-doping of WSe2 by covalent functionalization. ACS Nano 2014, 8, 10808-10814.
[73]
Y. M. Chang,; S. H. Yang,; C. Y. Lin,; C. H. Chen,; C. H. Lien,; W. B. Jian,; K. Ueno,; Y. W. Suen,; K. Tsukagoshi,; Y. F. Lin, Reversible and precisely controllable p/n-type doping of MoTe2 transistors through electrothermal doping. Adv. Mater. 2018, 30, 1706995.
[74]
H. Fang,; M. Tosun,; G. Seol,; T. C. Chang,; K. Takei,; J. Guo,; A. Javey, Degenerate n-doping of few-layer transition metal dichalcogenides by potassium. Nano Lett. 2013, 13, 1991-1995.
[75]
M. Tosun,; S. Chuang,; H. Fang,; A. B. Sachid,; M. Hettick,; Y. J. Lin,; Y. P. Zeng,; A. Javey, High-gain inverters based on WSe2 complementary field-effect transistors. ACS Nano 2014, 8, 4948-4953.
[76]
D. Y. Qi,; C. Han,; X. M. Rong,; X. W. Zhang,; M. Chhowalla,; A. T. S. Wee,; W. J. Zhang, Continuously tuning electronic properties of few-layer molybdenum ditelluride with in situ aluminum modification toward ultrahigh gain complementary inverters. ACS Nano 2019, 13, 9464-9472.
[77]
S. P. Koenig,; R. A. Doganov,; L. Seixas,; A. Carvalho,; J. Y. Tan,; K. Watanabe,; T. Taniguchi,; N. Yakovlev,; A. H. Castro Neto,; B. Özyilmaz, Electron doping of ultrathin black phosphorus with Cu adatoms. Nano Lett. 2016, 16, 2145-2151.
[78]
W. G. Liao,; L. Wang,; L. Chen,; W. Wei,; Z. Zeng,; X. Feng,; L. Huang,; W. C. Tan,; X. Huang,; K. W. Ang, et al. Efficient and reliable surface charge transfer doping of black phosphorus via atomic layer deposited MgO toward high performance complementary circuits. Nanoscale 2018, 10, 17007-17014.
[79]
W. Luo,; M. J. Zhu,; G. Peng,; X. M. Zheng,; F. Miao,; S. X. Bai,; X. A. Zhang,; S. Q. Qin, Carrier modulation of ambipolar few-layer MoTe2 transistors by MgO surface charge transfer doping. Adv. Funct. Mater. 2018, 28, 1704539.
[80]
J. Y. Lim,; A. Pezeshki,; S. Oh,; J. S. Kim,; Y. T. Lee,; S. Yu,; D. K. Hwang,; G. H. Lee,; H. J. Choi,; S. Im, Homogeneous 2D MoTe2 p-n junctions and CMOS inverters formed by atomic-layer-deposition- induced doping. Adv. Mater. 2017, 29, 1701798.
[81]
M. S. Choi,; D. S. Qu,; D. Lee,; X. C. Liu,; K. Watanabe,; T. Taniguchi,; W. J. Yoo, Lateral MoS2 p-n junction formed by chemical doping for use in high-performance optoelectronics. ACS Nano 2014, 8, 9332-9340.
[82]
H. M. Li,; D. Lee,; D. S. Qu,; X. C. Liu,; J. Ryu,; A. Seabaugh,; W. J. Yoo, Ultimate thin vertical p-n junction composed of two-dimensional layered molybdenum disulfide. Nat. Commun. 2015, 6, 6564.
[83]
X. C. Liu,; D. S. Qu,; J. Ryu,; F. Ahmed,; Z. Yang,; D. Lee,; W. J. Yoo, P-type polar transition of chemically doped multilayer MoS2 transistor. Adv. Mater. 2016, 28, 2345-2351.
[84]
D. Kiriya,; M. Tosun,; P. D. Zhao,; J. S. Kang,; A. Javey, Air-stable surface charge transfer doping of MoS2 by benzyl viologen. J. Am. Chem. Soc. 2014, 136, 7853-7856.
[85]
D. S. Qu,; X. C. Liu,; M. Huang,; C. Lee,; F. Ahmed,; H. Kim,; R. S. Ruoff,; J. Hone,; W. J. Yoo, Carrier-type modulation and mobility improvement of thin MoTe2. Adv. Mater. 2017, 29, 1606433.
[86]
Y. Li,; C. Y. Xu,; P. A. Hu,; L. Zhen, Carrier control of MoS2 nanoflakes by functional self-assembled monolayers. ACS Nano 2013, 7, 7795-7804.
[87]
D. M. Sim,; M. Kim,; S. Yim,; M. J. Choi,; J. Choi,; S. Yoo,; Y. S. Jung, Controlled doping of vacancy-containing few-layer MoS2 via highly stable thiol-based molecular chemisorption. ACS Nano 2015, 9, 12115-12123.
[88]
S. Najmaei,; X. L. Zou,; D. Q. Er,; J. W. Li,; Z. H. Jin,; W. L. Gao,; Q. Zhang,; S. Park,; L. H. Ge,; S. D. Lei, et al. Tailoring the physical properties of molybdenum disulfide monolayers by control of interfacial chemistry. Nano Lett. 2014, 14, 1354-1361.
[89]
M. A. Stoeckel,; M. Gobbi,; T. Leydecker,; Y. Wang,; M. Eredia,; S. Bonacchi,; R. Verucchi,; M. Timpel,; M. V. Nardi,; E. Orgiu, et al. Boosting and balancing electron and hole mobility in single- and bilayer WSe2 devices via tailored molecular functionalization. ACS Nano 2019, 13, 11613-11622.
[90]
D. H. Kang,; J. Shim,; S. K. Jang,; J. Jeon,; M. H. Jeon,; G. Y. Yeom,; W. S. Jung,; Y. H. Jang,; S. Lee,; J. H. Park, Controllable nondegenerate p-type doping of tungsten diselenide by octadecyltrichlorosilane. ACS Nano 2015, 9, 1099-1107.
[91]
D. H. Kang,; M. S. Kim,; J. Shim,; J. Jeon,; H. Y. Park,; W. S. Jung,; H. Y. Yu,; C. H. Pang,; S. Lee,; J. H. Park, High-performance transition metal dichalcogenide photodetectors enhanced by self-assembled monolayer doping. Adv. Funct. Mater. 2015, 25, 4219-4227.
[92]
L. L. Yu,; A. Zubair,; E. J. G. Santos,; X. Zhang,; Y. X. Lin,; Y. H. Zhang,; T. Palacios, High-performance WSe2 complementary metal oxide semiconductor technology and integrated circuits. Nano Lett. 2015, 15, 4928-4934.
[93]
K. Heo,; S. H. Jo,; J. Shim,; D. H. Kang,; J. H. Kim,; J. H. Park, Stable and reversible triphenylphosphine-based n-type doping technique for molybdenum disulfide (MoS2). ACS Appl. Mater. Interfaces 2018, 10, 32765-32772.
[94]
A. Nipane,; D. Karmakar,; N. Kaushik,; S. Karande,; S. Lodha, Few-layer MoS2 p-type devices enabled by selective doping using low energy phosphorus implantation. ACS Nano 2016, 10, 2128-2137.
[95]
X. F. Li,; M. W. Lin,; L. Basile,; S. M. Hus,; A. A. Puretzky,; J. Lee,; Y. C. Kuo,; L. Y. Chang,; K. Wang,; J. C. Idrobo, et al. Isoelectronic tungsten doping in monolayer MoSe2 for carrier type modulation. Adv. Mater. 2016, 28, 8240-8247.
[96]
C. Huang,; Y. B. Jin,; W. W. Wang,; L. Tang,; C. Y. Song,; F. X. Xiu, Manganese and chromium doping in atomically thin MoS2. J. Semicond. 2017, 38, 033004.
[97]
E. Z. Xu,; H. M. Liu,; K. Park,; Z. Li,; Y. Losovyj,; M. Starr,; M. Werbianskyj,; H. A. Fertig,; S. X. Zhang, P-type transition-metal doping of large-area MoS2 thin films grown by chemical vapor deposition. Nanoscale 2017, 9, 3576-3584.
[98]
X. D. Duan,; C. Wang,; Z. Fan,; G. L. Hao,; L. Z. Kou,; U. Halim,; H. L. Li,; X. P. Wu,; Y. C. Wang,; J. H. Jiang, et al. Synthesis of WS2xSe2-2x alloy nanosheets with composition-tunable electronic properties. Nano Lett. 2016, 16, 264-269.
[99]
P. Perumal,; R. K. Ulaganathan,; R. Sankar,; Y. M. Liao,; T. M. Sun,; M. W. Chu,; F. C. Chou,; Y. T. Chen,; M. H. Shih,; Y. F. Chen, Ultra-thin layered ternary single crystals [Sn(SxSe1-x)2] with bandgap engineering for high performance phototransistors on versatile substrates. Adv. Funct. Mater. 2016, 26, 3630-3638.
[100]
H. Fang,; S. Chuang,; T. C. Chang,; K. Takei,; T. Takahashi,; A. Javey, High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 2012, 12, 3788-3792.
[101]
L. M. Yang,; K. Majumdar,; H. Liu,; Y. C. Du,; H. Wu,; M. Hatzistergos,; P. Y. Hung,; R. Tieckelmann,; W. Tsai,; C. Hobbs, et al. Chloride molecular doping technique on 2D materials: WS2 and MoS2. Nano Lett. 2014, 14, 6275-6280.
[102]
C. Han,; Z. H. Hu,; L. C. Gomes,; Y. Bao,; A. Carvalho,; S. J. R. Tan,; B. Lei,; D. Xiang,; J. Wu,; D. Y. Qi, et al. Surface functionalization of black phosphorus via potassium toward high-performance complementary devices. Nano Lett. 2017, 17, 4122-4129.
[103]
Y. D. Liu,; Y. Q. Cai,; G. Zhang,; Y. W. Zhang,; K. W. Ang, Al-doped black phosphorus p-n homojunction diode for high performance photovoltaic. Adv. Funct. Mater. 2017, 27, 1604638.
[104]
Y. D. Liu,; K. W. Ang, Monolithically integrated flexible black phosphorus complementary inverter circuits. ACS Nano 2017, 11, 7416-7423.
[105]
L. Chen,; S. Li,; X. W. Feng,; L. Wang,; X. Huang,; B. C. K. Tee,; K. W. Ang, Gigahertz integrated circuits based on complementary black phosphorus transistors. Adv. Electron. Mater. 2018, 4, 1800274.
[106]
A. Rai,; A. Valsaraj,; H. C. P. Movva,; A. Roy,; R. Ghosh,; S. Sonde,; S. Kang,; J. Chang,; T. Trivedi,; R. Dey, et al. Air stable doping and intrinsic mobility enhancement in monolayer molybdenum disulfide by amorphous titanium suboxide encapsulation. Nano Lett. 2015, 15, 4329-4336.
[107]
Y. J. Park,; A. K. Katiyar,; A. T. Hoang,; J. H. Ahn, Controllable p- and n-type conversion of MoTe2 via oxide interfacial layer for logic circuits. Small 2019, 15, 1901772.
[108]
S. W. Min,; M. Yoon,; S. J. Yang,; K. R. Ko,; S. Im, Charge-transfer- induced p-type channel in MoS2 flake field effect transistors. ACS Appl. Mater. Interfaces 2018, 10, 4206-4212.
[109]
C. J. Zhou,; Y. D. Zhao,; S. Raju,; Y. Wang,; Z. Y. Lin,; M. S. Chan,; Y. Chai, Carrier type control of WSe2 field-effect transistors by thickness modulation and MoO3 layer doping. Adv. Funct. Mater. 2016, 26, 4223-4230.
[110]
S. Y. Zhang,; S. T. Le,; C. A. Richter,; C. A. Hacker, Improved contacts to p-type MoS2 transistors by charge-transfer doping and contact engineering. Appl. Phys. Lett. 2019, 115, 073106.
[111]
Y. Cho,; J. H. Park,; M. Kim,; Y. Jeong,; S. Yu,; J. Y. Lim,; Y. Yi,; S. Im, Impact of organic molecule-induced charge transfer on operating voltage control of both n-MoS2 and p-MoTe2 transistors. Nano Lett. 2019, 19, 2456-2463.
[112]
S. Mouri,; Y. Miyauchi,; K. Matsuda, Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett. 2013, 13, 5944-5948.
[113]
H. Xu,; H. M. Zhang,; Y. W. Liu,; S. M. Zhang,; Y. Y. Sun,; Z. X. Guo,; Y. C. Sheng,; X. D. Wang,; C. Luo,; X. Wu, et al. Controlled doping of wafer-scale PtSe2 films for device application. Adv. Funct. Mater. 2019, 29, 1805614.
[114]
H. G. Ji,; P. Solis-Fernández,; D. Yoshimura,; M. Maruyama,; T. Endo,; Y. Miyata,; S. Okada,; H. Ago, Chemically tuned p- and n-type WSe2 monolayers with high carrier mobility for advanced electronics. Adv. Mater. 2019, 31, 1903613.
[115]
W. M. Kang,; I. T. Cho,; J. Roh,; C. Lee,; J. H. Lee, High-gain complementary metal-oxide-semiconductor inverter based on multi-layer WSe2 field effect transistors without doping. Semicond. Sci. Technol. 2016, 31, 105001.
[116]
S. Das,; H. Y. Chen,; A. V. Penumatcha,; J. Appenzeller, High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 2013, 13, 100-105.
[117]
C. Gong,; L. Colombo,; R. M. Wallace,; K. Cho, The unusual mechanism of partial Fermi level pinning at metal-MoS2 interfaces. Nano Lett. 2014, 14, 1714-1720.
[118]
C. Kim,; I. Moon,; D. Lee,; M. S. Choi,; F. Ahmed,; S. Nam,; Y. Cho,; H. J. Shin,; S. Park,; W. J. Yoo, Fermi level pinning at electrical metal contacts of monolayer molybdenum dichalcogenides. ACS Nano 2017, 11, 1588-1596.
[119]
S. Das,; J. Appenzeller, WSe2 field effect transistors with enhanced ambipolar characteristics. Appl. Phys. Lett. 2013, 103, 103501.
[120]
S. Nakaharai,; M. Yamamoto,; K. Ueno,; K. Tsukagoshi, Carrier polarity control in alpha-MoTe2 chottky junctions based on weak fermi-level pinning. ACS Appl. Mater. Interfaces 2016, 8, 14732-14739.
[121]
W. N. Zhu,; M. N. Yogeesh,; S. X. Yang,; S. H. Aldave,; J. S. Kim,; S. Sonde,; L. Tao,; N. S. Lu,; D. Akinwande, Flexible black phosphorus ambipolar transistors, circuits and AM demodulator. Nano Lett. 2015, 15, 1883-1890.
[122]
Y. Liu,; Y. Huang,; X. F. Duan, Van der Waals integration before and beyond two-dimensional materials. Nature 2019, 567, 323-333.
[123]
L. A. Kong,; X. D. Zhang,; Q. Y. Tao,; M. L. Zhang,; W. Q. Dang,; Z. W. Li,; L. P. Feng,; L. Liao,; X. F. Duan,; Y. Liu, Doping-free complementary WSe2 circuit via van der Waals metal integration. Nat. Commun. 2020, 11, 1866.
[124]
S. Das,; M. Dubey,; A. Roelofs, High gain, low noise, fully complementary logic inverter based on bi-layer WSe2 field effect transistors. Appl. Phys. Lett. 2014, 105, 083511.
[125]
G. V. Resta,; Y. Balaji,; D. Lin,; I. P. Radu,; F. Catthoor,; P. E. Gaillardon,; G. De Micheli, Doping-free complementary logic gates enabled by two-dimensional polarity-controllable transistors. ACS Nano 2018, 12, 7039-7047.
[126]
G. J. Wu,; X. D. Wang,; Y. Chen,; S. Q. Wu,; B. M. Wu,; Y. Y. Jiang,; H. Shen,; T. Lin,; Q. Liu,; X. R. Wang, et al. MoTe2 p-n homojunctions defined by ferroelectric polarization. Adv. Mater. 2020, 32, 1907937.
[127]
G. J. Wu,; B. B. Tian,; L. Liu,; W. Lv,; S. Wu,; X. D. Wang,; Y. Chen,; J. Y. Li,; Z. Wang,; S. Q. Wu, et al. Programmable transition metal dichalcogenide homojunctions controlled by nonvolatile ferroelectric domains. Nat. Electron. 2020, 3, 43-50.
[128]
S. H. Jo,; D. H. Kang,; J. Shim,; J. Jeon,; M. H. Jeon,; G. Yoo,; J. Kim,; J. Lee,; G. Y. Yeom,; S. Lee, et al. A high-performance WSe2/h-BN photodetector using a triphenylphosphine (PPh3)-based n-doping technique. Adv. Mater. 2016, 28, 4824-4831.
[129]
X. Liu,; A. Islam,; J. Guo,; P. X. L. Feng, Controlling polarity of MoTe2 transistors for monolithic complementary logic via Schottky contact engineering. ACS Nano 2020, 14, 1457-1467.
Nano Research
Pages 1768-1783
Cite this article:
Kong L, Chen Y, Liu Y. Recent progresses of NMOS and CMOS logic functions based on two-dimensional semiconductors. Nano Research, 2021, 14(6): 1768-1783. https://doi.org/10.1007/s12274-020-2958-7
Topics:
Part of a topical collection:

923

Views

29

Crossref

N/A

Web of Science

30

Scopus

2

CSCD

Altmetrics

Received: 11 May 2020
Revised: 14 June 2020
Accepted: 25 June 2020
Published: 25 July 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return