AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Flocculation and magnetically-assisted sedimentation of size-sorted beidellite platelets mixed with maghemite nanoparticles

Sofia Housni1Sébastien Abramson1( )Jean-Michel Guigner2Pierre Levitz1Laurent Michot1
Laboratoire de PHysico-chimie des Electrolytes et Nanosystèmes InterfaciauX (PHENIX UMR 8234, Sorbonne Université - CNRS), Sorbonne Université, Paris 75252, France
Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC UMR 7590, Sorbonne Université - IRD - CNRS - MNHN), Sorbonne Université, Paris 75252, France
Show Author Information

Graphical Abstract

Abstract

In this study, the flocculation and the subsequent decantation step of mixed suspensions of 10 nm-sized γ-Fe2O3 magnetic nanoparticles and 500 nm-sized beidellite clay platelets was investigated. This work may find application in the field of water treatment, specifically the flocculation processes with magnetically assisted sedimentation. After a short description of the preparation and characterization of the raw materials (nanoparticles and clays), the influence of several parameters (pH, concentrations of nanoparticles and clays etc.) on the amount of flocculated materials was examined, which gave information on the concentration ranges allowing a complete flocculation, together with a better understanding on the interactions between nanoparticles and clays responsible for flocculation. The optimal conditions for magnetically assisted settling were then determined by comparing for each sample sedimentation velocities under gravity and in the presence of a Nd-Fe-B magnet. Finally, the complex multiscale structure of the flocs in water was explored, through the measurement of several bulk properties (zeta-potential and volume measurements, laser granulometry), while the organization of the materials at a microscopic scale was investigated by cryo-transmission electron microscopy (cryo-TEM) and small-angle X-ray scattering (SAXS).

Electronic Supplementary Material

Download File(s)
12274_2020_2964_MOESM1_ESM.pdf (1.5 MB)

References

[1]
Bottero, J. Y.; Lartiges, B. Séparation liquide/solide par coagulation- floculation: Les coagulants-floculants, mécanismes d’agrégation, structure et densité des flocs. Sci. Géol. Bull. 1993, 46, 163-174.
[2]
Fundamental physical-chemical engineering processes applicable to water treatment. SUEZ's degremont® water handbook [Online]. https://www.suezwaterhandbook.com/water-and-generalities/fundamental-physical-chemical-engineering-processes-applicable-to-water-treatment/sedimentation (accessed Feb 13, 2020).
[3]
Urbain, O. M.; Stemen, W. R. Process for treating liquids. U.S. Patent 2232294, February 18, 1941.
[4]
de Latour, C. Magnetic separation in water pollution control. IEEE Trans. Magnet. 1973, 9, 314-316.
[5]
de Latour, C.; Kolm, H. Magnetic separation in water pollution control - II. IEEE Trans. Magn. 1975, 11, 1570-1572.
[6]
Bolto, B. A.; Spurling, T. H. Water purification with magnetic particles. Environ. Monit. Assess. 1991, 19, 139-143.
[7]
Ward, C. SIROFLOC - unique method of water treatment [Online]. https://csiropedia.csiro.au/sirofloc/ (accessed July 26, 2018).
[8]
Yiacoumi, S.; Rountree, D. A.; Tsouris, C. Mechanism of particle flocculation by magnetic seeding. J. Colloid Interface Sci. 1996, 184, 477-488.
[9]
Karapinar, N.; Hoffmann, E.; Hahn, H. H. Magnetite seeded precipitation of phosphate. Water Res. 2004, 38, 3059-3066.
[10]
Cort, S. L. Magnetic separation and seeding to improve ballasted clarification of water. U.S. Patent 7820053, October 26, 2010.
[11]
Cort, S. L. Magnetic ballast clarification designs and applications. U.S. Patent 20160221845A1, August 4, 2016.
[12]
Lohwacharin, J.; Phetrak, A.; Oguma, K.; Takizawa, S. Flocculation performance of magnetic particles with high-turbidity surface water. Water Sci. Technol. Water Supply 2014, 14, 609-617.
[13]
Tombácz, E.; Csanaky, C.; Illés, E. Polydisperse fractal aggregate formation in clay mineral and iron oxide suspensions, pH and ionic strength dependence. Colloid Polym. Sci. 2001, 279, 484-492.
[14]
Cousin, F.; Cabuil, V.; Levitz, P. Magnetic colloidal particles as probes for the determination of the structure of laponite suspensions. Langmuir 2002, 18, 1466-1473.
[15]
Ji, Y. Q.; Black, L.; Weidler, P. G.; Janek, M. Preparation of nanostructured materials by heterocoagulation-interaction of montmorillonite with synthetic hematite particles. Langmuir 2004, 20, 9796-9806.
[16]
Tombácz, E.; Libor, Z.; Illés, E.; Majzik, A.; Klumpp, E. The role of reactive surface sites and complexation by humic acids in the interaction of clay mineral and iron oxide particles. Org. Geochem. 2004, 35, 257-267.
[17]
Galindo-González, C.; de Vicente, J.; Ramos-Tejada, M. M.; López- López, M. T.; González-Caballero, F.; Durán, J. D. G. Preparation and sedimentation behavior in magnetic fields of magnetite-covered clay particles. Langmuir 2005, 21, 4410-4419.
[18]
Szabó, T.; Bakandritsos, A.; Tzitzios, V.; Papp, S.; Korösi, L.; Galbács, G.; Musabekov, K.; Bolatova, D.; Petridis, D.; Dékány, I. Magnetic iron oxide/clay composites: Effect of the layer silicate support on the microstructure and phase formation of magnetic nanoparticles. Nanotechnology 2007, 18, 285602.
[19]
Esteban-Cubillo, A.; Marco, J. F.; Moya, J. S.; Pecharromán, C. On the nature and location of nanoparticulate iron phases and their precursors synthetized within a sepiolite matrix. J. Phys. Chem. C 2008, 112, 2864-2871.
[20]
Cousin, F.; Cabuil, V.; Grillo, I.; Levitz, P. Competition between entropy and electrostatic interactions in a binary colloidal mixture of spheres and platelets. Langmuir 2008, 24, 11422-11430.
[21]
Orolínová, Z.; Mockovčiaková, A. Structural study of bentonite/iron oxide composites. Mater. Chem. Phys. 2009, 114, 956-961.
[22]
de Paula, F. L. O.; da Silva, G. J.; Aquino, R.; Depeyrot, J.; Fossum, J. O.; Knudsen, K. D.; Helgesen, G.; Tourinho, F. A. Gravitational and magnetic separation in self-assembled clay-ferrofluid nanocomposites. Br. J. Phys. 2009, 39, 163-170.
[23]
Galindo-Gonzalez, C.; Feinberg, J. M.; Kasama, T.; Gontard, L. C.; Pósfai, M.; Kósa, I.; Duran, J. D. G.; Gil, J. E.; Harrison, R. J.; Dunin- Borkowski, R. E. Magnetic and microscopic characterization of magnetite nanoparticles adhered to clay surfaces. Am. Mineral. 2009, 94, 1120-1129.
[24]
Bunnak, N.; Ummartyotin, S.; Laoratanakul, P.; Bhalla, A. S.; Manuspiya, H. Synthesis and characterization of magnetic porous clay heterostructure. J. Porous Mater. 2014, 21, 1-8.
[25]
Liu, H. C.; Chen, W.; Liu, C.; Liu, Y.; Dong, C. L. Magnetic mesoporous clay adsorbent: Preparation, characterization and adsorption capacity for atrazine. Microp. Mesop. Mater. 2014, 194, 72-78.
[26]
Marins, J. A.; Mija, A.; Pin, J. M.; Giulieri, F.; Soares, B. G.; Sbirrazzuoli, N.; Lançon, P.; Bossis, G. Anisotropic reinforcement of epoxy-based nanocomposites with aligned magnetite-sepiolite hybrid nanofiller. Composit. Sci. Technol. 2015, 112, 34-41.
[27]
Barry, M. M.; Jung, Y.; Lee, J. K.; Phuoc, T. X.; Chyu, M. K. Fluid filtration and rheological properties of nanoparticle additive and intercalated clay hybrid bentonite drilling fluids. J. Pet. Sci. Eng. 2015, 127, 338-346.
[28]
Middea, A.; Spinelli, L. S.; Junior, F. G. S.; Neumann, R.; da F.M. Gomes, O.; Fernandes, T. L. A. P.; de Lima, L. C.; Barthem, V. M. T. S.; de Carvalho, F. V. Synthesis and characterization of magnetic palygorskite nanoparticles and their application on methylene blue remotion from water. Appl. Surf. Sci. 2015, 346, 232-239.
[29]
Bailey, L.; Lekkerkerker, H. N. W.; Maitland, G. C. Smectite clay- inorganic nanoparticle mixed suspensions: Phase behaviour and rheology. Soft Matter 2015, 11, 222-236.
[30]
Massart, R. Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans. Magn. 1981, 17, 1247-1248.
[31]
Paineau, E.; Antonova, K.; Baravian, C.; Bihannic, I.; Davidson, P.; Dozov, I.; Impéror-Clerc, M.; Levitz, P.; Madsen, A.; Meneau, F. et al. Liquid-crystalline nematic phase in aqueous suspensions of a disk-shaped natural beidellite clay. J. Phys. Chem. B 2009, 113, 15858-15869.
[32]
Charlot, G. Les Méthodes de La Chimie Analytique; Masson et Cie: Paris, 1961.
[33]
Beaucage, G. Approximations leading to a unified exponential/power- law approach to small-angle scattering. J. Appl. Cryst. 1995, 28, 717-728.
[34]
Bacri, J. C.; Perzynski, R.; Salin, D.; Cabuil, V.; Massart, R. Magnetic colloidal properties of ionic ferrofluids. J. Magn. Magn. Mater. 1986, 62, 36-46.
[35]
Lucas, I. T.; Durand-Vidal, S.; Dubois, E.; Chevalet, J.; Turq, P. Surface charge density of maghemite nanoparticles: Role of electrostatics in the proton exchange. J. Phys. Chem. C 2007, 111, 18568-18576.
[36]
Orsini, L.; Remy, J. C. Utilisation du chlorure de cobaltihexammine pour la détermination simultanée de la capacité d’échange et des bases échangeables des sols. Sci. Sol. 1976, 4, 269-275.
[37]
Paineau, E. N. Transitions de phases dans les argiles. Influence de la minéralogie et de la morphologie. Comportement sous écoulement et sous champs. Ph.D. Dissertation, Institut National Polytechnique de Lorraine, France, 2011.
[38]
Lagaly, G.; Ziesmer, S. Colloid chemistry of clay minerals: The coagulation of montmorillonite dispersions. Adv. Colloid Interface Sci. 2003, 100-102, 105-128.
[39]
Michot, L. J.; Bihannic, I.; Thomas, F.; Lartiges, B. S.; Waldvogel, Y.; Caillet, C.; Thieme, J.; Funari, S. S.; Levitz, P. Coagulation of Na-montmorillonite by inorganic cations at neutral pH. A combined transmission X-ray microscopy, small angle and wide angle X-ray scattering study. Langmuir 2013, 29, 3500-3510.
[40]
Michot, L. J.; Bihannic, I.; Porsch, K.; Maddi, S.; Baravian, C.; Mougel, J.; Levitz, P. Phase diagrams of wyoming na-montmorillonite clay. Influence of particle anisotropy. Langmuir 2004, 20, 10829-10837.
[41]
Tadros, T. F. Solid/Liquid Dispersions; Academic Press: London, 1987.
[42]
Wilhelm, C.; Gazeau, F.; Bacri, J. C. Magnetophoresis and ferromagnetic resonance of magnetically labeled cells. Eur. Biophys. J. 2002, 31, 118-125.
[43]
Berret, J. F.; Sandre, O.; Mauger, A. Size distribution of superparamagnetic particles determined by magnetic sedimentation. Langmuir 2007, 23, 2993-2999.
[44]
White, D. A.; Amornraksa, S. Batch sedimentation of magnetic flocs in a magnetic field. Chem. Eng. J. 2000, 79, 165-169.
[45]
Turchiuli, C.; Fargues, C. Influence of structural properties of alum and ferric flocs on sludge dewaterability. Chem. Eng. J. 2004, 103, 123-131.
Nano Research
Pages 3001-3011
Cite this article:
Housni S, Abramson S, Guigner J-M, et al. Flocculation and magnetically-assisted sedimentation of size-sorted beidellite platelets mixed with maghemite nanoparticles. Nano Research, 2020, 13(11): 3001-3011. https://doi.org/10.1007/s12274-020-2964-9
Topics:

820

Views

7

Crossref

N/A

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 23 April 2020
Revised: 29 June 2020
Accepted: 30 June 2020
Published: 04 August 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return