AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ultrastable and ultrasensitive pH-switchable carbon dots with high quantum yield for water quality identification, glucose detection, and two starch-based solid-state fluorescence materials

Daiyong Chao1,2Jinxing Chen2Qing Dong1,2Weiwei Wu2Desheng Qi1Shaojun Dong1,2( )
College of Chemistry, Jilin University, Changchun 130012, China
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
Show Author Information

Graphical Abstract

Abstract

It is attractive and encouraging to develop new fluorescent carbon dots (CDs) with excellent optical properties and promising applications prospects. Herein, highly-efficient green emissive CDs (m-CDs) with a high quantum yield (QY) of 71.7% in water are prepared through a facile solvothermal method. Interestingly, the m-CDs exhibit excellent fluorescence stability in the pH range of 1-9. However, the fluorescence intensity of the m-CDs is almost completely quenched as the pH is increased from 9 to 10. The mechanism of the unique pH-responsive behavior is discussed in detail and a plausible mechanism is proposed. Owing to the unique pH-responsive behavior, the m-CDs are used as a on-off fluorescent probe for water quality identification. By combining the reversible pH-ultrasensitive optical properties of the m-CDs in the pH range of 9-10 with the glucose oxidase-mimicking (GOx-mimicking) ability of Au nanoparticles (AuNPs), glucose can be quantitatively detected. Finally, two environment-friendly starch-based solid-state fluorescence materials (powder and film) are developed through green preparation routes.

Electronic Supplementary Material

Download File(s)
12274_2020_2965_MOESM1_ESM.pdf (3.2 MB)

References

[1]
Dong, Y. Q.; Pang, H. C.; Yang, H. B.; Guo, C. X.; Shao, J. W.; Chi, Y. W.; Li, C. M.; Yu, T. Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew. Chem., Int. Ed. 2013, 52, 7800-7804.
[2]
Esteves da Silva, J. C. G.; Gonçalves, H. M. R. Analytical and bioanalytical applications of carbon dots. TrAC Trends Anal. Chem. 2011, 30, 1327-1336.
[3]
Mintz, K. J.; Zhou, Y. Q.; Leblanc, R. M. Recent development of carbon quantum dots regarding their optical properties, photoluminescence mechanism, and core structure. Nanoscale 2019, 11, 4634-4652.
[4]
Lim, S. Y.; Shen, W.; Gao, Z. Q. Carbon quantum dots and their applications. Chem. Soc. Rev. 2015, 44, 362-381.
[5]
Zheng, X. T.; Ananthanarayanan, A.; Luo, K. Q.; Chen, P. Glowing graphene quantum dots and carbon dots: Properties, syntheses, and biological applications. Small 2015, 11, 1620-1636.
[6]
Liu, M. L.; Chen, B. B.; Li, C. M.; Huang, C. Z. Carbon dots: Synthesis, formation mechanism, fluorescence origin and sensing applications. Green Chem. 2019, 21, 449-471.
[7]
Yan, F. Y.; Jiang, Y. X.; Sun, X. D.; Wei, J. F.; Chen, L.; Zhang, Y. Y. Multicolor carbon dots with concentration-tunable fluorescence and solvent-affected aggregation states for white light-emitting diodes. Nano Res. 2020, 13, 52-60.
[8]
Sun, S.; Zhang, L.; Jiang, K.; Wu, A. G.; Lin, H. W. Toward high-efficient red emissive carbon dots: Facile preparation, unique properties, and applications as multifunctional theranostic agents. Chem. Mater. 2016, 28, 8659-8668.
[9]
Liu, R. H.; Huang, H.; Li, H. T.; Liu, Y.; Zhong, J.; Li, Y. Y.; Zhang, S.; Kang, Z. H. Metal nanoparticle/carbon quantum dot composite as a photocatalyst for high-efficiency cyclohexane oxidation. ACS Catal. 2013, 4, 328-336.
[10]
Xu, Q.; Pu, P.; Zhao, J. G.; Dong, C. B.; Gao, C.; Chen, Y. S.; Chen, J. R.; Liu, Y.; Zhou, H. J. Preparation of highly photoluminescent sulfur-doped carbon dots for Fe(III) detection. J. Mater. Chem. A 2015, 3, 542-546.
[11]
Sun, X. C.; Lei, Y. Fluorescent carbon dots and their sensing applications. TrAC Trends Anal. Chem. 2017, 89, 163-180.
[12]
Miao, X.; Qu, D.; Yang, D. X.; Nie, B.; Zhao, Y. K.; Fan, H. Y.; Sun, Z. C. Synthesis of carbon dots with multiple color emission by controlled graphitization and surface functionalization. Adv. Mater. 2018, 30, 1704740.
[13]
Wu, Z. L.; Liu, Z. X.; Yuan, Y. H. Carbon dots: Materials, synthesis, properties and approaches to long-wavelength and multicolor emission. J. Mater. Chem. B 2017, 5, 3794-3809.
[14]
Ding, C. Q.; Zhu, A. W.; Tian, Y. Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging. Acc. Chem. Res. 2014, 47, 20-30.
[15]
Wu, M. H.; Zhan, J.; Geng, B. J.; He, P. P.; Wu, K.; Wang, L.; Xu, G.; Li, Z.; Yin, L. Q.; Pan, D. Y. Scalable synthesis of organic-soluble carbon quantum dots: Superior optical properties in solvents, solids, and LEDs. Nanoscale 2017, 9, 13195-13202.
[16]
Yan, F. Y.; Jiang, Y. X.; Sun, X. D.; Bai, Z. J.; Zhang, Y.; Zhou, X. G. Surface modification and chemical functionalization of carbon dots: A review. Microchim. Acta 2018, 185, 424.
[17]
Yuan, F. L.; Wang, Z. B.; Li, X. H.; Li, Y. C.; Tan, Z. A.; Fan, L. Z.; Yang, S. H. Bright multicolor bandgap fluorescent carbon quantum dots for electroluminescent light-emitting diodes. Adv. Mater. 2017, 29, 1604436.
[18]
Wang, Z. F.; Yuan, F. L.; Li, X. H.; Li, Y. C.; Zhong, H. Z.; Fan, L. Z.; Yang, S. H. 53% efficient red emissive carbon quantum dots for high color rendering and stable warm white-light-emitting diodes. Adv. Mater. 2017, 29, 1702910.
[19]
Qu, S. N.; Zhou, D.; Li, D.; Ji, W. Y.; Jing, P. T.; Han, D.; Liu, L.; Zeng, H. B.; Shen, D. Z. Toward efficient orange emissive carbon nanodots through conjugated sp2-domain controlling and surface charges engineering. Adv. Mater. 2016, 28, 3516-3521.
[20]
Miao, X.; Yan, X. L.; Qu, D.; Li, D. B.; Tao, F. F.; Sun, Z. C. Red emissive sulfur, nitrogen codoped carbon dots and their application in ion detection and theraonostics. ACS Appl. Mater. Interfaces 2017, 9, 18549-18556.
[21]
Wang, X.; Cao, L.; Yang, S. T.; Lu, F. S.; Meziani, M. J.; Tian, L. L.; Sun, K. W.; Bloodgood, M. A.; Sun, Y. P. Bandgap-like strong fluorescence in functionalized carbon nanoparticles. Angew. Chem., Int. Ed. 2010, 49, 5310-5314.
[22]
Qu, D.; Zheng, M.; Zhang, L. G.; Zhao, H. F.; Xie, Z. G.; Jing, X. B.; Haddad, R. E.; Fan, H. Y.; Sun, Z. C. Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots. Sci. Rep. 2015, 4, 5294.
[23]
Zhu, S. J.; Meng, Q. N.; Wang, L.; Zhang, J. H.; Song, Y. B.; Jin, H.; Zhang, K.; Sun, H. C.; Wang, H. Y.; Yang, B. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem., Int. Ed. 2013, 52, 3953-3957.
[24]
Wang, F.; Pang, S. P.; Wang, L.; Li, Q.; Kreiter, M.; Liu, C. Y. One- step synthesis of highly luminescent carbon dots in noncoordinating solvents. Chem. Mater. 2010, 22, 4528-4530.
[25]
Wang, H.; Gao, P.; Wang, Y.; Guo, J.; Zhang, K. Q.; Du, D. Z.; Dai, X.; Zou, G. F. Fluorescently tuned nitrogen-doped carbon dots from carbon source with different content of carboxyl groups. APL Mater. 2015, 3, 086102.
[26]
Pan, L. L.; Sun, S.; Zhang, A. D.; Jiang, K.; Zhang, L.; Dong, C. Q.; Huang, Q.; Wu, A. G.; Lin, H. W. Truly fluorescent excitation- dependent carbon dots and their applications in multicolor cellular imaging and multidimensional sensing. Adv. Mater. 2015, 27, 7782-7787.
[27]
Pan, L. L.; Sun, S.; Zhang, L.; Jiang, K.; Lin, H. W. Near-infrared emissive carbon dots for two-photon fluorescence bioimaging. Nanoscale 2016, 8, 17350-17356.
[28]
Hou, J.; Wang, W.; Zhou, T. Y.; Wang, B.; Li, H. Y.; Ding, L. Synthesis and formation mechanistic investigation of nitrogen-doped carbon dots with high quantum yields and yellowish-green fluorescence. Nanoscale 2016, 8, 11185-11193.
[29]
Wang, T. Y.; Chen, G. Q.; Li, L.; Wu, Y. M. Highly fluorescent green carbon dots as a fluorescent probe for detecting mineral water pH. Sensors 2019, 19, 3801.
[30]
Ren, X. L.; Liu, J.; Meng, X. W.; Wei, J. F.; Liu, T. L.; Tang, F. Q. Synthesis of ultra-stable fluorescent carbon dots from polyvinylpyrrolidone and their application in the detection of hydroxyl radicals. Chem.—Asian J. 2014, 9, 1054-1059.
[31]
Liu, Y. B.; Zhou, L.; Li, Y. N.; Deng, R. P.; Zhang, H. J. Highly fluorescent nitrogen-doped carbon dots with excellent thermal and photo stability applied as invisible ink for loading important information and anti-counterfeiting. Nanoscale 2017, 9, 491-496.
[32]
Liu, Y. B.; Zhou, L.; Li, Y. N.; Deng, R. P.; Zhang, H. J. Facile synthesis of nitrogen-doped carbon dots with robust fluorescence in a strongly alkaline solution and a reversible fluorescence “off-on” switch between strongly acidic and alkaline solutions. RSC Adv. 2016, 6, 108203-108208.
[33]
Liu, Y.; Tu, D. T.; Zheng, W.; Lu, L. Y.; You, W. W.; Zhou, S. Y.; Huang, P.; Li, R. F.; Chen, X. Y. A strategy for accurate detection of glucose in human serum and whole blood based on an upconversion nanoparticles-polydopamine nanosystem. Nano Res. 2018, 11, 3164-3174.
[34]
Xiao, N.; Liu, S. G.; Mo, S.; Yang, Y. Z.; Han, L.; Ju, Y. J.; Li, N. B.; Luo, H. Q. B, N-carbon dots-based ratiometric fluorescent and colorimetric dual-readout sensor for H2O2 and H2O2-involved metabolites detection using ZnFe2O4 magnetic microspheres as peroxidase mimics. Sens. Actuators B Chem. 2018, 273, 1735-1743.
[35]
Lu, H. Z.; Yu, C. W.; Zhang, Y.; Xu, S. F. Efficient core shell structured dual response ratiometric fluorescence probe for determination of H2O2 and glucose via etching of silver nanoprisms. Anal. Chim. Acta 2019, 1048, 178-185.
[36]
Safitri, E.; Heng, L. Y.; Ahmad, M.; Ling, T. L. Fluorescence bioanalytical method for urea determination based on water soluble ZnS quantum dots. Sens. Actuators B Chem. 2017, 240, 763-769.
[37]
Wang, Y.; Lu, L. L.; Peng, H.; Xu, J.; Wang, F. Y.; Qi, R. J.; Xu, Z. A.; Zhang, W. Multi-doped carbon dots with ratiometric pH sensing properties for monitoring enzyme catalytic reactions. Chem. Commun. 2016, 52, 9247-9250.
[38]
Liu, X. P.; Yan, Z. Q.; Zhang, Y.; Liu, Z. W.; Sun, Y. H.; Ren, J. S.; Qu, X. G. Two-dimensional metal-organic framework/enzyme hybrid nanocatalyst as a benign and self-activated cascade reagent for in vivo wound healing. ACS Nano 2019, 13, 5222-5230.
[39]
Pandey, G.; Chaudhari, R.; Joshi, B.; Choudhary, S.; Kaur, J.; Joshi, A. Fluorescent biocompatible platinum-porphyrin-doped polymeric hybrid particles for oxygen and glucose biosensing. Sci. Rep. 2019, 9, 5029.
[40]
Önal, Y.; Schimpf, S.; Claus, P. Structure sensitivity and kinetics of D-glucose oxidation to D-gluconic acid over carbon-supported gold catalysts. J. Catal. 2004, 223, 122-133.
[41]
Wang, H.; Sun, C.; Chen, X. R.; Zhang, Y.; Colvin, V. L.; Rice, Q.; Seo, J.; Feng, S. Y.; Wang, S. N.; Yu, W. W. Excitation wavelength independent visible color emission of carbon dots. Nanoscale 2017, 9, 1909-1915.
[42]
Shamsipur, M.; Barati, A.; Karami, S. Long-wavelength, multicolor, and white-light emitting carbon-based dots: Achievements made, challenges remaining, and applications. Carbon 2017, 124, 429-472.
[43]
Wang, H.; Gao, P.; Wang, Y.; Guo, J.; Zhang, K. Q.; Du, D. Z.; Dai, X.; Zou, G. F. Fluorescently tuned nitrogen-doped carbon dots from carbon source with different content of carboxyl groups. APL Mater. 2015, 3, 086102.
[44]
Ding, H.; Yu, S. B.; Wei, J. S.; Xiong, H. M. Full-color light- emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano 2016, 10, 484-491.
[45]
Ji, Z. W.; Sheardy, A.; Zeng, Z.; Zhang, W. D.; Chevva, H.; Allado, K.; Yin, Z. Y.; Wei, J. J. Tuning the functional groups on carbon nanodots and antioxidant studies. Molecules 2019, 24, 152.
[46]
Dutta Choudhury, S.; Chethodil, J. M.; Gharat, P. M.; Gharat, P. M.; Praseetha, P. K.; Pal, H. pH-elicited luminescence functionalities of carbon dots: Mechanistic insights. J. Phys. Chem. Lett. 2017, 8, 1389-1395.
[47]
Wan, S. L.; Zheng, Y.; Shen, J.; Yang, W. T.; Yin, M. Z. “On-off-on” switchable sensor: A fluorescent spiropyran responds to extreme pH conditions and its bioimaging applications. ACS Appl. Mater. Interfaces 2014, 6, 19515-19519.
[48]
Biella, S.; Prati, L.; Rossi, M. Selective oxidation of D-glucose on gold catalyst. J. Catal. 2002, 206, 242-247.
[49]
Comotti, M.; Della Pina, C.; Matarrese, R.; Rossi, M. The catalytic activity of “naked” gold particles. Angew. Chem., Int. Ed. 2004, 43, 5812-5815.
[50]
Ma, Y. S.; Zhang, X. M.; Bai, J. L.; Huang, K.; Ren, L. L. Facile, controllable tune of blue shift or red shift of the fluorescence emission of solid-state carbon dots. Chem. Eng. J. 2019, 374, 787-792.
[51]
Shao, J. R.; Zhu, S. J.; Liu, H. W.; Song, Y. B.; Tao, S. Y.; Yang, B. Full-color emission polymer carbon dots with quench-resistant solid-state fluorescence. Adv. Sci. 2017, 4, 1700395.
[52]
Suzuki, K.; Malfatti, L.; Takahashi, M.; Carboni, D.; Messina, F.; Tokudome, Y.; Takemoto, M.; Innocenzi, P. Design of carbon dots photoluminescence through organo-functional silane grafting for solid-state emitting devices. Sci. Rep. 2017, 7, 5469.
[53]
Chen, Y. H.; Zheng, M. T.; Xiao, Y.; Dong, H. W.; Zhang, H. R.; Zhuang, J. L.; Hu, H.; Lei, B. F.; Liu, Y. L. A self-quenching-resistant carbon-dot powder with tunable solid-state fluorescence and construction of dual-fluorescence morphologies for white light-emission. Adv. Mater. 2016, 28, 312-318.
[54]
Shen, C. L.; Zang, J. H.; Lou, Q.; Su, L. X.; Li, Z.; Liu, Z. Y.; Dong, L.; Shan, C. X. In-situ embedding of carbon dots in a trisodium citrate crystal matrix for tunable solid-state fluorescence. Carbon 2018, 136, 359-368.
Nano Research
Pages 3012-3018
Cite this article:
Chao D, Chen J, Dong Q, et al. Ultrastable and ultrasensitive pH-switchable carbon dots with high quantum yield for water quality identification, glucose detection, and two starch-based solid-state fluorescence materials. Nano Research, 2020, 13(11): 3012-3018. https://doi.org/10.1007/s12274-020-2965-8
Topics:

780

Views

52

Crossref

N/A

Web of Science

58

Scopus

0

CSCD

Altmetrics

Received: 03 May 2020
Revised: 29 June 2020
Accepted: 30 June 2020
Published: 07 August 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return