Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Surface-ligand protected reduction on plasmonic tuning of one- dimensional MoO3-x nanobelts for solar steam generation

Xindian LiDongyang WangYun ZhangLuntao LiuWenshou Wang()
National Engineering Research Center for Colloidal Materials and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Sub-stoichiometric MoO3-x nanostructures with plasmonic absorption via creating oxygen vacancies have attracted extensive attentions for many intriguing applications. However, the synthesis of one-dimensional (1D) plasmonic MoO3-x nanostructures with widely tunable plasmonic absorption has remained a significant challenge because of their serious morphological destruction and phase change with increasing the concentration of oxygen vacancies. Here we demonstrate a surface-ligand protected reduction strategy for the synthesis of 1D MoO3-x nanobelts with tunable plasmonic absorption in a wide wavelength range from 200 to 2,500 nm. Polyethylene glycol (PEG-400) is used as both the reductant to produce oxygen vacancies and the surface protected ligands to maintain 1D morphology during the formation process of MoO3-x nanobelts, enabling the widely tunable plasmonic absorption. Owing to their broad plasmonic absorption and unique 1D nanostructure, we further demonstrate the application of 1D MoO3-x nanobelts as photothermal film for interfacial solar evaporator. The surface-ligand protected reduction strategy provides a new avenue for the developing plasmonic semiconductor oxides with maintained particle morphology and thus enriching their wide applications.

Electronic Supplementary Material

Download File(s)
12274_2020_2967_MOESM1_ESM.pdf (3.7 MB)

References

[1]
Shannon, M. A.; Bohn, P. W.; Elimelech, M.; Georgiadis, J. G.; Marinas, B. J.; Mayes, A. M. Science and technology for water purification in the coming decades. Nature 2008, 452, 301-310.
[2]
Mekonnen, M. M.; Hoekstra, A. Y. Four billion people facing severe water scarcity. Sci. Adv. 2016, 2, e1500323.
[3]
Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294-303.
[4]
Lewis, N. S. Research opportunities to advance solar energy utilization. Science 2016, 351, aad1920.
[5]
Liang, H. X.; Liao, Q. H.; Chen, N.; Liang, Y.; Lv, G. Q.; Zhang, P. P.; Lu, B.; Qu, L. T. Thermal efficiency of solar steam generation approaching 100% through capillary water transport. Angew. Chem., Int. Ed. 2019, 58, 19041-19046.
[6]
Zhu, L. L.; Gao, M. M.; Peha, C. K. N.; Ho, G. W. Recent progress in solar-driven interfacial water evaporation: Advanced designs and applications. Nano Energy 2019, 57, 507-518.
[7]
Wang, P. Emerging investigator series: The rise of nano-enabled photothermal materials for water evaporation and clean water production by sunlight. Environ. Sci.: Nano 2018, 5, 1078-1089.
[8]
Zhu, L. L.; Gao, M. M.; Peh, C. K. N.; Ho, G. W. Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications. Mater. Horiz. 2018, 5, 323-343.
[9]
Lalisse, A.; Tessier, G.; Plain, J.; Baffou, G. Quantifying the efficiency of plasmonic materials for near-field enhancement and photothermal conversion. J. Phys. Chem. C 2015, 119, 25518-25528.
[10]
Wang, Z. H.; Liu, Y. M.; Tao, P.; Shen, Q. C.; Yi, N.; Zhang, F. Y.; Liu, Q. L.; Song, C. Y.; Zhang, D.; Shang, W. et al. Bio-inspired evaporation through plasmonic film of nanoparticles at the air-water interface. Small 2014, 10, 3234-3239.
[11]
Hu, H.; Wang, Z. Y.; Ye, Q. X.; He, J. Q.; Nie, X.; He, G. F.; Song, C. Y.; Shang, W.; Wu, J. B.; Tao, P. et al. Substrateless welding of self-assembled silver nanowires at air/water interface. ACS Appl. Mater. Interfaces 2016, 8, 20483-20490.
[12]
Chen, J. X.; Feng, J.; Li, Z. W.; Xu, P. P.; Wang, X. J.; Yin, W. W.; Wang, M. Z.; Ge, X. W.; Yin, Y. D. Space-confined seeded growth of black silver nanostructures for solar steam generation. Nano Lett. 2019, 19, 400-407.
[13]
Liu, P. H.; Wen, M. C.; Tan, C. S.; Navlani-García, M.; Kuwahara, Y.; Mori, K.; Yamashita, H.; Chen, L. J. Surface plasmon resonance enhancement of production of H2 from ammonia borane solution with tunable Cu2-xS nanowires decorated by Pd nanoparticles. Nano Energy 2017, 31, 57-63.
[14]
Ding, D. D.; Huang, W. C.; Song, C. Q.; Yan, M.; Guo, C. S.; Liu, S. Q. Non-stoichiometric MoO3-x quantum dots as a light-harvesting material for interfacial water evaporation. Chem. Commun. 2017, 53, 6744-6747.
[15]
Chang, Y. H.; Wang, Z. G.; Shi, Y. E.; Ma, X. C.; Ma, L.; Zhang, Y. Q.; Zhan, J. H. Hydrophobic W18O49 mesocrystal on hydrophilic PTFE membrane as an efficient solar steam generation device under one sun. J. Mater. Chem. A 2018, 6, 10939-10946.
[16]
Cheng, H. F.; Qian, X. F.; Kuwahara, Y.; Mori, K.; Yamashita, H. A plasmonic molybdenum oxide hybrid with reversible tunability for visible-light-enhanced catalytic reactions. Adv. Mater. 2015, 27, 4616-4621.
[17]
Chen, Y.; Chen, T. M.; Wu, X. J.; Yang, G. W. Oxygen vacancy- engineered PEGylated MoO3-x nanoparticles with superior sulfite oxidase mimetic activity for vitamin B1 detection. Small 2019, 15, 1903153.
[18]
Zhang, N. M. Y.; Li, K. W.; Zhang, T.; Shum, P.; Wang, Z.; Wang, Z. X.; Zhang, N.; Zhang, J.; Wu, T. T.; Wei, L. Electron-rich two- dimensional molybdenum trioxides for highly integrated plasmonic biosensing. ACS Photonics 2018, 5, 347-352.
[19]
Yin, H. B.; Kuwahara, Y.; Mori, K.; Cheng, H. F.; Wen, M. C.; Yamashita, H. High-surface-area plasmonic MoO3-x: Rational synthesis and enhanced ammonia borane dehydrogenation activity. J. Mater. Chem. A 2017, 5, 8946-8953.
[20]
Etman, A. S.; Wang, L. G.; Edström, K.; Nyholm, L.; Sun, J. L. Molybdenum oxide nanosheets with tunable plasmonic resonance: Aqueous exfoliation synthesis and charge storage applications. Adv. Funct. Mater. 2019, 29, 1806699.
[21]
Zhang, G. B.; Xiong, T. F.; Yan, M. Y.; He, L.; Liao, X. B.; He, C. Q.; Yin, C. S.; Zhang, H. N.; Mai, L. Q. α-MoO3-x by plasma etching with improved capacity and stabilized structure for lithium storage. Nano Energy 2018, 49, 555-563.
[22]
Wu, Q. L.; Zhao, S. X.; Yu, L.; Zheng, X. X.; Wang, Y. F.; Yu, L. Q.; Nan, C. W.; Cao, G. Z. Oxygen vacancy-enriched MoO3-x nanobelts for asymmetric supercapacitors with excellent room/low temperature performance. J. Mater. Chem. A 2019, 7, 13205-13214.
[23]
Huang, Q. Q.; Hu, S.; Zhuang, J.; Wang, X. MoO3-x-based hybrids with tunable localized surface plasmon resonances: Chemical oxidation driving transformation from ultrathin nanosheets to nanotubes. Chem. -Eur. J. 2012, 18, 15283-15287.
[24]
Alsaif, M. M. Y. A.; Latham, K.; Field, M. R.; Yao, D. D.; Medehkar, N. V.; Beane, G. A.; Kaner, R. B.; Russo, S. P.; Ou, J. Z.; Kalantar-zadeh, K. Tunable plasmon resonances in two-dimensional molybdenum oxide nanoflakes. Adv. Mater. 2014, 26, 3931-3937.
[25]
Alsaif, M. M. Y. A.; Field, M. R.; Daeneke, T.; Chrimes, A. F.; Zhang, W.; Carey, B. J.; Berean, K. J.; Walia, S.; van Embden, J.; Zhang, B. Y. et al. Exfoliation solvent dependent plasmon resonances in two-dimensional sub-stoichiometric molybdenum oxide nanoflakes. ACS Appl. Mater. Interfaces 2016, 8, 3482-3493.
[26]
Zhang, B. Y.; Zavabeti, A.; Chrimes, A. F.; Haque, F.; O’Dell, L. A.; Khan, H.; Syed, N.; Datta, R.; Wang, Y. C.; Chesman, A. S. R. et al. Degenerately hydrogen doped molybdenum oxide nanodisks for ultrasensitive plasmonic biosensing. Adv. Funct. Mater. 2018, 28, 1706006.
[27]
Wang, J. H.; Yang, Y. H.; Li, H.; Gao, J.; He, P.; Bian, L.; Dong, F. Q.; He, Y. Stable and tunable plasmon resonance of molybdenum oxide nanosheets from the ultraviolet to the near-infrared region for ultrasensitive surface-enhanced Raman analysis. Chem. Sci. 2019, 10, 6330-6335.
[28]
Kim, W.; Nair, S. Membranes from nanoporous 1D and 2D materials: A review of opportunities, developments, and challenges. Chem. Eng. Sci. 2013, 104, 908-924.
[29]
Wu, Q. L.; Zhao, S. X.; Yu, L.; Yu, L. Q.; Zheng, X. X.; Wei, G. D. In situ synthesis and electrochemical performance of MoO3-x nanobelts as anode materials for lithium-ion batteries. Dalton Trans. 2019, 48, 12832-12838.
[30]
Li, B.; Wang, X.; Wu, X. Y.; He, G. J.; Xu, R. Y.; Lu, X. W.; Wang, F. R.; Parkin, I. P. Phase and morphological control of MoO3-x nanostructures for efficient cancer theragnosis therapy. Nanoscale 2017, 9, 11012-11016.
[31]
Tan, X. J.; Wang, L. Z.; Cheng, C.; Yan, X. F.; Shen, B.; Zhang, J. L. Plasmonic MoO3-x@MoO3 nanosheets for highly sensitive SERS detection through nanoshell-isolated electromagnetic enhancement. Chem. Commun. 2016, 52, 2893-2896.
[32]
Yang, C. H.; Lu, H. B.; Li, C. J.; Wang, L. J.; Wang, H. Spatially-confined electrochemical reactions of MoO3 nanobelts for reversible high capacity: Critical roles of glucose. Chem. Eng. J. 2018, 337, 1-9.
[33]
Sinaim, H.; Ham, D. J.; Lee, J. S.; Phuruangrat, A.; Thongtem, S.; Thongtem, T. Free-polymer controlling morphology of α-MoO3 nanobelts by a facile hydrothermal synthesis, their electrochemistry for hydrogen evolution reactions and optical properties. J. Alloys Compd. 2012, 516, 172-178.
[34]
Liu, Q. W.; Wu, Y. W.; Zhang, J. W.; Chen, K. J.; Huang, C. J.; Chen, H.; Qiu, X. Q. Plasmonic MoO3-x nanosheets with tunable oxygen vacancies as efficient visible light responsive photocatalyst. Appl. Surf. Sci. 2019, 490, 395-402.
[35]
Sun, Z. Z.; Yang, C. H.; Liu, G. Y.; Lu, H. B.; Zhang, R.; Wang, L. J.; Wang, H. Largely enhanced electrochemical performance in MoO3-x nanobelts formed by a “Sauna reaction”: Importance of oxygen vacancies. Electrochim. Acta 2017, 239, 16-24.
[36]
Li, J.; Ye, Y. H.; Ye, L. Q.; Su, F. Y.; Ma, Z. Y.; Huang, J. D.; Xie, H. Q.; Doronkin, D. E.; Zimina, A.; Grunwaldt, J. D. et al. Sunlight induced photo-thermal synergistic catalytic CO2 conversion via localized surface plasmon resonance of MoO3-x. J. Mater. Chem. A 2019, 7, 2821-2830.
[37]
Bao, T.; Yin, W.; Zheng, X.; Zhang, X.; Yu, J.; Dong, X.; Yong, Y.; Gao, F.; Yan, L.; Gu, Z. et al. One-pot synthesis of PEGylated plasmonic MoO3-x hollow nanospheres for photoacoustic imaging guided chemo-photothermal combinational therapy of cancer. Biomaterials 2016, 76, 11-24.
[38]
Guo, C.; Yan, P. F.; Zhu, C. H.; Wei, C.; Liu, W.; Wu, W. Z.; Wang, X. Z.; Zheng, L. R.; Wang, J. O.; Du, Y. et al. Amorphous MoO3-x nanosheets prepared by the reduction of crystalline MoO3 by Mo metal for LSPR and photothermal conversion. Chem. Commun. 2019, 55, 12527-12530.
[39]
Gavrilyuk, A. I.; Afanasiev, M. M. ESR study of photoinjection of hydrogen in nanostructured MoO3 thin films. Sol. Energy Mater. Sol. Cells 2009, 93, 280-288.
[40]
Zuo, F.; Wang, L.; Wu, T.; Zhang, Z. Y.; Borchardt, D.; Feng, P. Y. Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light. J. Am. Chem. Soc. 2010, 132, 11856-11857.
[41]
Liu, X.; Swihart, M. T. Heavily-doped colloidal semiconductor and metal oxide nanocrystals: An emerging new class of plasmonic nanomaterials. Chem. Soc. Rev. 2014, 43, 3908-3920.
[42]
Lee, S. H.; Nishi, H.; Tatsuma, T. Plasmonic behaviour and plasmon- induced charge separation of nanostructured MoO3-x under near infrared irradiation. Nanoscale 2018, 10, 2841-2847.
[43]
Wang, X. J.; Nesper, R.; Villevieille, C.; Novák, P. Ammonolyzed MoO3 nanobelts as novel cathode material of rechargeable Li-ion batteries. Adv. Energy Mater. 2013, 3, 606-614.
[44]
Li, X. Y.; Xiao, Q. G.; Ning, P. G.; Xu, H. B.; Zhang, Y. Morphological and structural diversity of molybdenum oxide-based hybrid materials prepared through PEG induction. Cryst. Growth Des. 2016, 16, 1512-1518.
[45]
Lou, X. W.; Zeng, H. C. Complex α-MoO3 nanostructures with external bonding capacity for self-assembly. J. Am. Chem. Soc. 2003, 125, 2697-2704.
[46]
Yunusi, T.; Yang, C.; Cai, W. L.; Xiao, F.; Wang, J. D.; Su, X. T. Synthesis of MoO3 submicron belts and MoO2 submicron spheres via polyethylene glycol-assisted hydrothermal method and their gas sensing properties. Ceram. Int. 2013, 39, 3435-3439.
[47]
Chen, Z. G.; Wang, Q.; Wang, H. L.; Zhang, L. S.; Song, G. S.; Song, L. L.; Hu, J. Q.; Wang, H. Z.; Liu, J. S.; Zhu, M. F. et al. Ultrathin PEGylated W18O49 nanowires as a new 980 nm-laser-driven photothermal agent for efficient ablation of cancer cells in vivo. Adv. Mater. 2013, 25, 2095-2100.
[48]
Chen, R.; Wang, X.; Gan, Q. M.; Zhang, T. Q.; Zhu, K. H.; Ye, M. M. A bifunctional MoS2-based solar evaporator for both efficient water evaporation and clean freshwater collection. J. Mater. Chem. A 2019, 7, 11177-11185.
[49]
Gan, Q. M.; Zhang, T. Q.; Chen, R.; Wang, X.; Ye, M. M. Simple, low-dose, durable, and carbon-nanotube-based floating solar still for efficient desalination and purification. ACS Sustainable Chem. Eng. 2019, 7, 3925-3932.
Nano Research
Pages 3025-3032
Cite this article:
Li X, Wang D, Zhang Y, et al. Surface-ligand protected reduction on plasmonic tuning of one- dimensional MoO3-x nanobelts for solar steam generation. Nano Research, 2020, 13(11): 3025-3032. https://doi.org/10.1007/s12274-020-2967-6
Topics:
Metrics & Citations  
Article History
Copyright
Return