AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Surface-ligand protected reduction on plasmonic tuning of one- dimensional MoO3-x nanobelts for solar steam generation

Xindian LiDongyang WangYun ZhangLuntao LiuWenshou Wang( )
National Engineering Research Center for Colloidal Materials and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
Show Author Information

Graphical Abstract

Abstract

Sub-stoichiometric MoO3-x nanostructures with plasmonic absorption via creating oxygen vacancies have attracted extensive attentions for many intriguing applications. However, the synthesis of one-dimensional (1D) plasmonic MoO3-x nanostructures with widely tunable plasmonic absorption has remained a significant challenge because of their serious morphological destruction and phase change with increasing the concentration of oxygen vacancies. Here we demonstrate a surface-ligand protected reduction strategy for the synthesis of 1D MoO3-x nanobelts with tunable plasmonic absorption in a wide wavelength range from 200 to 2,500 nm. Polyethylene glycol (PEG-400) is used as both the reductant to produce oxygen vacancies and the surface protected ligands to maintain 1D morphology during the formation process of MoO3-x nanobelts, enabling the widely tunable plasmonic absorption. Owing to their broad plasmonic absorption and unique 1D nanostructure, we further demonstrate the application of 1D MoO3-x nanobelts as photothermal film for interfacial solar evaporator. The surface-ligand protected reduction strategy provides a new avenue for the developing plasmonic semiconductor oxides with maintained particle morphology and thus enriching their wide applications.

Electronic Supplementary Material

Download File(s)
12274_2020_2967_MOESM1_ESM.pdf (3.7 MB)

References

[1]
Shannon, M. A.; Bohn, P. W.; Elimelech, M.; Georgiadis, J. G.; Marinas, B. J.; Mayes, A. M. Science and technology for water purification in the coming decades. Nature 2008, 452, 301-310.
[2]
Mekonnen, M. M.; Hoekstra, A. Y. Four billion people facing severe water scarcity. Sci. Adv. 2016, 2, e1500323.
[3]
Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294-303.
[4]
Lewis, N. S. Research opportunities to advance solar energy utilization. Science 2016, 351, aad1920.
[5]
Liang, H. X.; Liao, Q. H.; Chen, N.; Liang, Y.; Lv, G. Q.; Zhang, P. P.; Lu, B.; Qu, L. T. Thermal efficiency of solar steam generation approaching 100% through capillary water transport. Angew. Chem., Int. Ed. 2019, 58, 19041-19046.
[6]
Zhu, L. L.; Gao, M. M.; Peha, C. K. N.; Ho, G. W. Recent progress in solar-driven interfacial water evaporation: Advanced designs and applications. Nano Energy 2019, 57, 507-518.
[7]
Wang, P. Emerging investigator series: The rise of nano-enabled photothermal materials for water evaporation and clean water production by sunlight. Environ. Sci.: Nano 2018, 5, 1078-1089.
[8]
Zhu, L. L.; Gao, M. M.; Peh, C. K. N.; Ho, G. W. Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications. Mater. Horiz. 2018, 5, 323-343.
[9]
Lalisse, A.; Tessier, G.; Plain, J.; Baffou, G. Quantifying the efficiency of plasmonic materials for near-field enhancement and photothermal conversion. J. Phys. Chem. C 2015, 119, 25518-25528.
[10]
Wang, Z. H.; Liu, Y. M.; Tao, P.; Shen, Q. C.; Yi, N.; Zhang, F. Y.; Liu, Q. L.; Song, C. Y.; Zhang, D.; Shang, W. et al. Bio-inspired evaporation through plasmonic film of nanoparticles at the air-water interface. Small 2014, 10, 3234-3239.
[11]
Hu, H.; Wang, Z. Y.; Ye, Q. X.; He, J. Q.; Nie, X.; He, G. F.; Song, C. Y.; Shang, W.; Wu, J. B.; Tao, P. et al. Substrateless welding of self-assembled silver nanowires at air/water interface. ACS Appl. Mater. Interfaces 2016, 8, 20483-20490.
[12]
Chen, J. X.; Feng, J.; Li, Z. W.; Xu, P. P.; Wang, X. J.; Yin, W. W.; Wang, M. Z.; Ge, X. W.; Yin, Y. D. Space-confined seeded growth of black silver nanostructures for solar steam generation. Nano Lett. 2019, 19, 400-407.
[13]
Liu, P. H.; Wen, M. C.; Tan, C. S.; Navlani-García, M.; Kuwahara, Y.; Mori, K.; Yamashita, H.; Chen, L. J. Surface plasmon resonance enhancement of production of H2 from ammonia borane solution with tunable Cu2-xS nanowires decorated by Pd nanoparticles. Nano Energy 2017, 31, 57-63.
[14]
Ding, D. D.; Huang, W. C.; Song, C. Q.; Yan, M.; Guo, C. S.; Liu, S. Q. Non-stoichiometric MoO3-x quantum dots as a light-harvesting material for interfacial water evaporation. Chem. Commun. 2017, 53, 6744-6747.
[15]
Chang, Y. H.; Wang, Z. G.; Shi, Y. E.; Ma, X. C.; Ma, L.; Zhang, Y. Q.; Zhan, J. H. Hydrophobic W18O49 mesocrystal on hydrophilic PTFE membrane as an efficient solar steam generation device under one sun. J. Mater. Chem. A 2018, 6, 10939-10946.
[16]
Cheng, H. F.; Qian, X. F.; Kuwahara, Y.; Mori, K.; Yamashita, H. A plasmonic molybdenum oxide hybrid with reversible tunability for visible-light-enhanced catalytic reactions. Adv. Mater. 2015, 27, 4616-4621.
[17]
Chen, Y.; Chen, T. M.; Wu, X. J.; Yang, G. W. Oxygen vacancy- engineered PEGylated MoO3-x nanoparticles with superior sulfite oxidase mimetic activity for vitamin B1 detection. Small 2019, 15, 1903153.
[18]
Zhang, N. M. Y.; Li, K. W.; Zhang, T.; Shum, P.; Wang, Z.; Wang, Z. X.; Zhang, N.; Zhang, J.; Wu, T. T.; Wei, L. Electron-rich two- dimensional molybdenum trioxides for highly integrated plasmonic biosensing. ACS Photonics 2018, 5, 347-352.
[19]
Yin, H. B.; Kuwahara, Y.; Mori, K.; Cheng, H. F.; Wen, M. C.; Yamashita, H. High-surface-area plasmonic MoO3-x: Rational synthesis and enhanced ammonia borane dehydrogenation activity. J. Mater. Chem. A 2017, 5, 8946-8953.
[20]
Etman, A. S.; Wang, L. G.; Edström, K.; Nyholm, L.; Sun, J. L. Molybdenum oxide nanosheets with tunable plasmonic resonance: Aqueous exfoliation synthesis and charge storage applications. Adv. Funct. Mater. 2019, 29, 1806699.
[21]
Zhang, G. B.; Xiong, T. F.; Yan, M. Y.; He, L.; Liao, X. B.; He, C. Q.; Yin, C. S.; Zhang, H. N.; Mai, L. Q. α-MoO3-x by plasma etching with improved capacity and stabilized structure for lithium storage. Nano Energy 2018, 49, 555-563.
[22]
Wu, Q. L.; Zhao, S. X.; Yu, L.; Zheng, X. X.; Wang, Y. F.; Yu, L. Q.; Nan, C. W.; Cao, G. Z. Oxygen vacancy-enriched MoO3-x nanobelts for asymmetric supercapacitors with excellent room/low temperature performance. J. Mater. Chem. A 2019, 7, 13205-13214.
[23]
Huang, Q. Q.; Hu, S.; Zhuang, J.; Wang, X. MoO3-x-based hybrids with tunable localized surface plasmon resonances: Chemical oxidation driving transformation from ultrathin nanosheets to nanotubes. Chem. -Eur. J. 2012, 18, 15283-15287.
[24]
Alsaif, M. M. Y. A.; Latham, K.; Field, M. R.; Yao, D. D.; Medehkar, N. V.; Beane, G. A.; Kaner, R. B.; Russo, S. P.; Ou, J. Z.; Kalantar-zadeh, K. Tunable plasmon resonances in two-dimensional molybdenum oxide nanoflakes. Adv. Mater. 2014, 26, 3931-3937.
[25]
Alsaif, M. M. Y. A.; Field, M. R.; Daeneke, T.; Chrimes, A. F.; Zhang, W.; Carey, B. J.; Berean, K. J.; Walia, S.; van Embden, J.; Zhang, B. Y. et al. Exfoliation solvent dependent plasmon resonances in two-dimensional sub-stoichiometric molybdenum oxide nanoflakes. ACS Appl. Mater. Interfaces 2016, 8, 3482-3493.
[26]
Zhang, B. Y.; Zavabeti, A.; Chrimes, A. F.; Haque, F.; O’Dell, L. A.; Khan, H.; Syed, N.; Datta, R.; Wang, Y. C.; Chesman, A. S. R. et al. Degenerately hydrogen doped molybdenum oxide nanodisks for ultrasensitive plasmonic biosensing. Adv. Funct. Mater. 2018, 28, 1706006.
[27]
Wang, J. H.; Yang, Y. H.; Li, H.; Gao, J.; He, P.; Bian, L.; Dong, F. Q.; He, Y. Stable and tunable plasmon resonance of molybdenum oxide nanosheets from the ultraviolet to the near-infrared region for ultrasensitive surface-enhanced Raman analysis. Chem. Sci. 2019, 10, 6330-6335.
[28]
Kim, W.; Nair, S. Membranes from nanoporous 1D and 2D materials: A review of opportunities, developments, and challenges. Chem. Eng. Sci. 2013, 104, 908-924.
[29]
Wu, Q. L.; Zhao, S. X.; Yu, L.; Yu, L. Q.; Zheng, X. X.; Wei, G. D. In situ synthesis and electrochemical performance of MoO3-x nanobelts as anode materials for lithium-ion batteries. Dalton Trans. 2019, 48, 12832-12838.
[30]
Li, B.; Wang, X.; Wu, X. Y.; He, G. J.; Xu, R. Y.; Lu, X. W.; Wang, F. R.; Parkin, I. P. Phase and morphological control of MoO3-x nanostructures for efficient cancer theragnosis therapy. Nanoscale 2017, 9, 11012-11016.
[31]
Tan, X. J.; Wang, L. Z.; Cheng, C.; Yan, X. F.; Shen, B.; Zhang, J. L. Plasmonic MoO3-x@MoO3 nanosheets for highly sensitive SERS detection through nanoshell-isolated electromagnetic enhancement. Chem. Commun. 2016, 52, 2893-2896.
[32]
Yang, C. H.; Lu, H. B.; Li, C. J.; Wang, L. J.; Wang, H. Spatially-confined electrochemical reactions of MoO3 nanobelts for reversible high capacity: Critical roles of glucose. Chem. Eng. J. 2018, 337, 1-9.
[33]
Sinaim, H.; Ham, D. J.; Lee, J. S.; Phuruangrat, A.; Thongtem, S.; Thongtem, T. Free-polymer controlling morphology of α-MoO3 nanobelts by a facile hydrothermal synthesis, their electrochemistry for hydrogen evolution reactions and optical properties. J. Alloys Compd. 2012, 516, 172-178.
[34]
Liu, Q. W.; Wu, Y. W.; Zhang, J. W.; Chen, K. J.; Huang, C. J.; Chen, H.; Qiu, X. Q. Plasmonic MoO3-x nanosheets with tunable oxygen vacancies as efficient visible light responsive photocatalyst. Appl. Surf. Sci. 2019, 490, 395-402.
[35]
Sun, Z. Z.; Yang, C. H.; Liu, G. Y.; Lu, H. B.; Zhang, R.; Wang, L. J.; Wang, H. Largely enhanced electrochemical performance in MoO3-x nanobelts formed by a “Sauna reaction”: Importance of oxygen vacancies. Electrochim. Acta 2017, 239, 16-24.
[36]
Li, J.; Ye, Y. H.; Ye, L. Q.; Su, F. Y.; Ma, Z. Y.; Huang, J. D.; Xie, H. Q.; Doronkin, D. E.; Zimina, A.; Grunwaldt, J. D. et al. Sunlight induced photo-thermal synergistic catalytic CO2 conversion via localized surface plasmon resonance of MoO3-x. J. Mater. Chem. A 2019, 7, 2821-2830.
[37]
Bao, T.; Yin, W.; Zheng, X.; Zhang, X.; Yu, J.; Dong, X.; Yong, Y.; Gao, F.; Yan, L.; Gu, Z. et al. One-pot synthesis of PEGylated plasmonic MoO3-x hollow nanospheres for photoacoustic imaging guided chemo-photothermal combinational therapy of cancer. Biomaterials 2016, 76, 11-24.
[38]
Guo, C.; Yan, P. F.; Zhu, C. H.; Wei, C.; Liu, W.; Wu, W. Z.; Wang, X. Z.; Zheng, L. R.; Wang, J. O.; Du, Y. et al. Amorphous MoO3-x nanosheets prepared by the reduction of crystalline MoO3 by Mo metal for LSPR and photothermal conversion. Chem. Commun. 2019, 55, 12527-12530.
[39]
Gavrilyuk, A. I.; Afanasiev, M. M. ESR study of photoinjection of hydrogen in nanostructured MoO3 thin films. Sol. Energy Mater. Sol. Cells 2009, 93, 280-288.
[40]
Zuo, F.; Wang, L.; Wu, T.; Zhang, Z. Y.; Borchardt, D.; Feng, P. Y. Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light. J. Am. Chem. Soc. 2010, 132, 11856-11857.
[41]
Liu, X.; Swihart, M. T. Heavily-doped colloidal semiconductor and metal oxide nanocrystals: An emerging new class of plasmonic nanomaterials. Chem. Soc. Rev. 2014, 43, 3908-3920.
[42]
Lee, S. H.; Nishi, H.; Tatsuma, T. Plasmonic behaviour and plasmon- induced charge separation of nanostructured MoO3-x under near infrared irradiation. Nanoscale 2018, 10, 2841-2847.
[43]
Wang, X. J.; Nesper, R.; Villevieille, C.; Novák, P. Ammonolyzed MoO3 nanobelts as novel cathode material of rechargeable Li-ion batteries. Adv. Energy Mater. 2013, 3, 606-614.
[44]
Li, X. Y.; Xiao, Q. G.; Ning, P. G.; Xu, H. B.; Zhang, Y. Morphological and structural diversity of molybdenum oxide-based hybrid materials prepared through PEG induction. Cryst. Growth Des. 2016, 16, 1512-1518.
[45]
Lou, X. W.; Zeng, H. C. Complex α-MoO3 nanostructures with external bonding capacity for self-assembly. J. Am. Chem. Soc. 2003, 125, 2697-2704.
[46]
Yunusi, T.; Yang, C.; Cai, W. L.; Xiao, F.; Wang, J. D.; Su, X. T. Synthesis of MoO3 submicron belts and MoO2 submicron spheres via polyethylene glycol-assisted hydrothermal method and their gas sensing properties. Ceram. Int. 2013, 39, 3435-3439.
[47]
Chen, Z. G.; Wang, Q.; Wang, H. L.; Zhang, L. S.; Song, G. S.; Song, L. L.; Hu, J. Q.; Wang, H. Z.; Liu, J. S.; Zhu, M. F. et al. Ultrathin PEGylated W18O49 nanowires as a new 980 nm-laser-driven photothermal agent for efficient ablation of cancer cells in vivo. Adv. Mater. 2013, 25, 2095-2100.
[48]
Chen, R.; Wang, X.; Gan, Q. M.; Zhang, T. Q.; Zhu, K. H.; Ye, M. M. A bifunctional MoS2-based solar evaporator for both efficient water evaporation and clean freshwater collection. J. Mater. Chem. A 2019, 7, 11177-11185.
[49]
Gan, Q. M.; Zhang, T. Q.; Chen, R.; Wang, X.; Ye, M. M. Simple, low-dose, durable, and carbon-nanotube-based floating solar still for efficient desalination and purification. ACS Sustainable Chem. Eng. 2019, 7, 3925-3932.
Nano Research
Pages 3025-3032
Cite this article:
Li X, Wang D, Zhang Y, et al. Surface-ligand protected reduction on plasmonic tuning of one- dimensional MoO3-x nanobelts for solar steam generation. Nano Research, 2020, 13(11): 3025-3032. https://doi.org/10.1007/s12274-020-2967-6
Topics:

896

Views

40

Crossref

N/A

Web of Science

40

Scopus

4

CSCD

Altmetrics

Received: 14 May 2020
Revised: 28 June 2020
Accepted: 30 June 2020
Published: 04 August 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return