AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Tuning the inhomogeneous charge transport in ZnO interfaces for ultrahigh on/off ratio top-gated field-effect-transistor arrays

Thanh Luan Phan1Dinh Loc Duong2,3Tuan Khanh Chau2,3Sidi Fan2,3Won Tae Kang1Thi Suong Le2,3Hyun Yong Song2,3Linfeng Sun3Van Tu Vu1Min Ji Lee1Quoc An Vu2,3Young Hee Lee2,3,4Woo Jong Yu1( )
Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
Department of Physics, Sungkyunkwan University, Suwon 16419, Republic of Korea
Show Author Information

Graphical Abstract

Abstract

The interface between oxide/oxide layers shows an inhomogeneous charge transport behavior, which reveals a high conductivity owing to interface-doped. One typical example is the hetero-interface between ZnO film and other wide band gap oxides (e.g., Al2O3, TiO2, and HfO2). It is thus quite evident that the ZnO/other oxides hetero-interface contains high density electron carriers effectively screening the gate-induced electric field. Thus, an extremely weak gate modulation in ZnO film was showed, resulting in very low on/off ratio of 1.69 in top-gate field-effect-transistor (TG-FET) configuration. So, to extend the usage of ZnO TG-FET is not quite possible toward further practical application. Herein, we clarified the correlation of inhomogeneous region in oxide/oxide hetero-junction by systematically study. Our work suggests that a self-assembly of molecules (SAM) buffer layer is suitable for tuning the inhomogeneous charge transport in ZnO film, which not only reduces the interface trap density, but also effectively enhances the gate electric field modulation at the hetero-interface. We further report the robust fabrication of TG-FET arrays based on ZnO thin film, using an ultra-thin alkylphosphonic acid molecule monolayer as buffer layer. Our device demonstrates a pronounced ultrahigh on/off ratio of ≥ 108, which is 8-order of magnitude higher than that of a device without buffer layer. For the highly reliable arrays, our device exhibits a high yield of over 93% with an average on/off ratio of ~107 across the entire wafer scale, mobility (18.5 cm2/(V·s)), an extended bias-stressing (~ 2,000 s) and long-stability (~ 150 days) under ambient conditions.

Electronic Supplementary Material

Download File(s)
12274_2020_2968_MOESM1_ESM.pdf (4.1 MB)

References

[1]
Levy, D. H.; Freeman, D.; Nelson, S. F.; Cowdery-Corvan, P. J.; Irving, L. M. Stable ZnO thin film transistors by fast open air atomic layer deposition. Appl. Phys. Lett. 2008, 92, 192101.
[2]
Park, J. W.; Kang, B. H.; Kim, H. J. A review of low-temperature solution-processed metal oxide thin-film transistors for flexible electronics. Adv. Funct. Mater. 2019, 30, 1904632.
[3]
Rim, Y. S.; Chen, H. J.; Kou, X. L.; Duan, H. S.; Zhou, H. P.; Cai, M.; Kim, H. J.; Yang, Y. Boost up mobility of solution-processed metal oxide thin-film transistors via confining structure on electron pathways. Adv. Mater. 2014, 26, 4273-4278.
[4]
Lee, D. H.; Han, S. Y.; Herman, G. S.; Chang, C. H. Inkjet printed high-mobility indium zinc tin oxide thin film transistors. J. Mater. Chem. 2009, 19, 3135-3137.
[5]
Kim, M. G.; Kanatzidis, M. G.; Facchetti, A.; Marks, T. J. low- temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing. Nat. Mater. 2011, 10, 382-388.
[6]
Banger, K. K.; Yamashita, Y.; Mori, K.; Peterson, R. L.; Leedham, T.; Rickard, J.; Sirringhaus, H. Low-temperature, high-performance solution-processed metal oxide thin-film transistors formed by a ‘sol-gel on chip’ process. Nat. Mater. 2011, 10, 45-50.
[7]
Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 2004, 432, 488-492.
[8]
Tynell, T.; Karppinen, M. Atomic layer deposition of ZnO: A review. Semicond. Sci. Technol. 2014, 29, 043001.
[9]
Özgür, Ü.; Alivov, Y. I.; Liu, C.; Teke, A.; Reshchikov, M. A.; Doǧan, S.; Avrutin, V.; Cho, S. J. Morkoç, H. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 2005, 98, 041301.
[10]
Hoye, R.; L. Z.; Muñoz-Rojas, D.; Nelson, S. F.; Illiberi, A.; Poodt, P.; Roozeboom, F.; MacManus-Driscoll, J. L. Research Update: Atmospheric pressure spatial atomic layer deposition of ZnO thin films: Reactors, doping, and devices. APL Mater. 2015, 3, 040701.
[11]
Park, S.; H. K.; Hwang, C. S.; Jeong, H. Y.; Chu, H. Y.; Cho, K. I. Transparent ZnO-TFT arrays fabricated by atomic layer deposition. Electrochem. Solid State Lett. 2008, 11, H10.
[12]
Masuda, S.; Kitamura, K.; Okumura, Y.; Miyatake, S.; Tabata, H.; Kawai, T. Transparent thin film transistors using ZnO as an active channel layer and their electrical properties. J. Appl. Phys. 2003, 93, 1624-1630.
[13]
Hirao, T.; Furuta, M.; Furuta, H.; Matsuda, T.; Hiramatsu, T.; Hokari, H.; Yoshida, M.; Ishii, H.; Kakegawa, M. Novel top-gate zinc oxide thin-film transistors (ZnO TFTs) for AMLCDs. J. Soc. Inf. Disp. 2007, 15, 17-22.
[14]
Kwon, S.; Bang, S.; Lee, S.; Jeon, S.; Jeong, W.; Kim, H.; Gong, S. C.; Chang, H. J.; Park, H. H.; Jeon, H. Characteristics of the ZnO thin film transistor by atomic layer deposition at various temperatures. Semicond. Sci. Technol. 2009, 24, 035015.
[15]
Carcia, P. F.; McLean, R. S.; Reilly, M. H. High-performance ZnO thin-film transistors on gate dielectrics grown by atomic layer deposition. Appl. Phys. Lett. 2006, 88, 123509.
[16]
Shaw, A.; Wrench, J. S.; Jin, J. D.; Whittles. T. J., Mitrovic, I. Z.; Raja, M.; Dhanak, V. R.; Chalker, P. R.; Hall, S. Atomic layer deposition of Nb-doped ZnO for thin film transistors. Appl. Physic Lett. 2016, 109, 222103.
[17]
Wrench, J. S.; Brunell, I. F.; Chalker, P. R.; Jin, J. D.; Shaw, A.; Mitrovic, I. Z.; Hall, S. Compositional tuning of atomic layer deposited MgZnO for thin film transistors. Appl. Phys. Lett. 2014, 105, 202109.
[18]
Kim, J. M.; Nam, T.; Lim, S. J.; Seol, Y. G.; Lee, N. E.; Kim, D.; Kim, H. Atomic layer deposition ZnO:N flexible thin film transistors and the effects of bending on device properties. Appl. Phys. Lett. 2011, 98, 142113.
[19]
Lim, S. J.; Kwon, S. J.; Kim, H.; Park, J. S. High performance thin film transistor with low temperature atomic layer deposition nitrogen-doped ZnO. Appl. Phys. Lett. 2007, 91, 183517.
[20]
Chung, Y. J.; Choi, W. J.; Kang, S. G.; Lee, C. W.; Lee, J. O.; Kong, K. J.; Lee, Y. K. A study on the influence of local doping in atomic layer deposited Al:ZnO thin film transistors. J. Mater. Chem. C 2014, 2, 9274-9282.
[21]
Nelson, S. F.; Ellinger, C. R.; Levy, D. H. Improving yield and performance in ZnO thin-film transistors made using selective area deposition. ACS Appl. Mater. Interfaces 2015, 7, 2754-2759.
[22]
Noh, S. H.; Choi, W.; Oh, M. S.; Hwang, D. K.; Lee, K.; Im, S.; Jang, S.; Kim, E. ZnO-based nonvolatile memory thin-film transistors with polymer dielectric/ferroelectric double gate insulators. Appl. Phys. Lett. 2007, 90, 253504.
[23]
Jiang, X.; Wong, F. L.; Fung, M. K.; Lee, S. T. Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices. Appl. Phys. Lett. 2003, 83, 1875-1877.
[24]
Stolt, L.; Hedström, J.; Kessler, J.; Ruckh, M.; Velthaus, K. O.; Schock, H. W. ZnO/CdS/CuInSe2 thin-film solar cells with improved performance. Appl. Phys. Lett. 1993, 62, 597-599.
[25]
Song, K.; Noh, J.; Jun, T.; Jung, Y.; Kang, H. Y.; Moon, J. Fully flexible solution-deposited ZnO thin-film transistors. Adv. Mater. 2010, 22, 4308-4312.
[26]
Lee, L.; Hwang, J.; Jung, J. W.; Kim, J.; Lee, H. I.; Heo, S.; Yoon, M.; Choi, S.; Van Long, N. Park, J.; Jeong, J. W. et al. ZnO composite nanolayer with mobility edge quantization for multi-value logic transistors. Nat. Commun. 2019, 10, 1998.
[27]
Miao, Y. F.; Ke, Y.; Wang, N. N.; Zou, W.; Xu, M. M.; Cao, Y.; Sun, Y.; Yang, R.; Wang, Y.; Tong, Y. F. et al. Stable and bright formamidinium-based perovskite light-emitting diodes with high energy conversion efficiency. Nat. Commun. 2019, 10, 3624.
[28]
Lin, Y. Y.; Hsu, C. C.; Tseng, M. H.; Shyue, J. J.; Tsai, F. Y. Stable and high-performance flexible ZnO thin-film transistors by atomic layer deposition. ACS Appl. Mater. Interfaces 2015, 7, 22610-22617.
[29]
Meyer, J.; Görrn, P.; Bertram, F.; Hamwi, S.; Winkler, T.; Johannes, H. H.; Weimann, T.; Hinze, P.; Riedl, T.; Kowalsky, W. Al2O3/ZrO2 nanolaminates as ultrahigh gas-diffusion barriers—A strategy for reliable encapsulation of organic electronics. Adv. Mater. 2009, 21, 1845-1849.
[30]
Görrn, P.; Riedl, T.; Kowalsky, W. Encapsulation of zinc tin oxide based thin film transistors. J. Phys. Chem. C 2009, 113, 11126-11130.
[31]
Fakhri, M.; Babin, N.; Behrendt, A.; Jakob, T.; Görrn, P.; Riedl, T. Facile encapsulation of oxide based thin film transistors by atomic layer deposition based on ozone. Adv. Mater. 2013, 25, 2821-2825.
[32]
Yun, W. M.; Jang, J.; Nam, S.; Kim, L. H.; Seo, S. J.; Park, C. E. Thermally evaporated SiO thin films as a versatile interlayer for plasma-based OLED passivation. ACS Appl. Mater. Interfaces 2012, 4, 3247-3253.
[33]
Luo, H.; Liang, L. Y.; Cao, H. T.; Dai, M. Z.; Lu, Y. C.; Wang, M. Control of Ambipolar transport in SnO thin-film transistors by back- channel surface passivation for high performance complementary- like inverters. ACS Appl. Mater. Interfaces 2015, 7, 17023-17031.
[34]
Park, J. C.; Ahn, S. E.; Lee, H. N. High-performance low-cost back-channel-etch amorphous gallium-indium-zinc oxide thin-film transistors by curing and passivation of the damaged back channel. ACS Appl. Mater. Interfaces 2013, 5, 12262-12267.
[35]
Geng, Y.; Guo, L.; Xu, S. S.; Sun, Q. Q.; Ding, S. J.; Lu, H. L.; Zhang, D. W. Influence of Al doping on the properties of ZnO thin films grown by atomic layer deposition. J. Phys. Chem. C 2011, 115, 12317-12321.
[36]
Lömker, P.; Müller, M. Redox-controlled epitaxy and magnetism of oxide heterointerfaces: EuO/SrTiO3. Phys. Rev. Mater. 2019, 3, 061401(R).
[37]
Rödel, T. C.; Dai, J.; Fortuna, F.; Frantzeskakis, E.; Le Fèvre, P.; Bertran, F.; Kobayashi, M.; Yukawa, R.; Mitsuhashi, T.; Kitamura, M.; Horiba, K. et al. High-density two-dimensional electron system induced by oxygen vacancies in ZnO. Phys. Rev. Mater. 2018, 2, 051601(R).
[38]
Choe, D.; Jin, M. J.; Kim, S. I.; Choi, H. J.; Jo, J.; Oh, I.; Park, J.; Jin, H.; Koo, H. C.; Min, B. C. et al. Gate-tunable giant nonreciprocal charge transport in noncentrosymmetric oxide interfaces. Nat. Commun. 2019, 10, 4510.
[39]
Losego, M. D.; Guske, J. T.; Efremenko, A.; Maria, J. P.; Franzen, S. Characterizing the molecular order of phosphonic acid self-assembled monolayers on indium tin oxide surfaces. Langmuir 2011, 27, 11883-11888.
[40]
Chin, H. S.; Chao, L. S. The effect of thermal annealing processes on structural and photoluminescence of zinc oxide thin film. J. Nanomater. 2013, 2013, 424953.
[41]
Nguyen, T. N.; Nguyen, V. D.; Jung, S.; Yi, J. The metal-induced crystallization of poly-Si and the mobility enhancement of thin film transistors fabricated on a glass substrate. Microelectron. Eng. 2010, 87, 2163-2167.
[42]
Phan, T. L.; Vu, Q. A.; Kim, Y. R.; Shin, Y. S.; Lee, I. M.; Tran, M. D.; Jiang, J. B.; Luong, D. H.; Liao, L.; Lee, Y. H. et al. Efficient gate modulation in a screening-engineered MoS2/single-walled carbon nanotube network heterojunction vertical field-effect transistor. ACS Appl. Mater. Interfaces 2019, 11, 25516-25523.
[43]
Wang, A. J.; Chen, T. F.; Lu, S. H.; Wu, Z.; Li, Y.; Chen, H.; Wang, Y. Effects of doping and annealing on properties of ZnO films grown by atomic layer deposition. Nanoscale Res. Lett. 2015, 10, 75.
[44]
Sheng, J. Z.; Hong, T. H.; Lee, H. M.; Kim, K. R.; Sasase, M.; Kim, J.; Hosono, H.; Park, J. S. Amorphous IGZO TFT with high mobility of 70 cm2/(V·s) via vertical dimension control using PEALD. ACS Appl. Mater. Interfaces 2019, 11, 40300-40309.
[45]
Phan, T. L.; Kang, M.; Choi, S. H.; Kim, Y. J.; Jung, H.; Yoon, I. T.; Yang, W. Charge transferred doping of single layer graphene by mono-dispersed manganese-oxide nanoparticles adsorption. Appl. Phys. Lett. 2017, 111, 153103.
[46]
Watanabe, K.; Taniguchi, T.; Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 2004, 3, 404-409.
[47]
Kim, Y. R.; Phan, T. L.; Shin, Y. S.; Kang, W. T.; Won, U. Y.; Lee, I.; Kim, J. E.; Kim, K.; Lee, Y. H.; Yu, W. J. Unveiling the hot carrier distribution in vertical Graphene/h-BN/Au van der Waals heterostructures for high-performance photodetector. ACS Appl. Mater. Interfaces 2020, 12, 10772-10780.
[48]
Vu, Q. A.; Fan, S. D.; Lee, S. H.; Joo, M. K.; Yu, W. J.; Lee, Y. H. Near-zero hysteresis and near-ideal subthreshold swing in h-BN encapsulated single-layer MoS2 field-effect transistors. 2D Mater. 2018, 5, 031001.
Nano Research
Pages 3033-3040
Cite this article:
Phan TL, Duong DL, Chau TK, et al. Tuning the inhomogeneous charge transport in ZnO interfaces for ultrahigh on/off ratio top-gated field-effect-transistor arrays. Nano Research, 2020, 13(11): 3033-3040. https://doi.org/10.1007/s12274-020-2968-5
Topics:

734

Views

1

Crossref

N/A

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 08 June 2020
Accepted: 01 July 2020
Published: 08 August 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return