AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Metal-polyphenol-network coated CaCO3 as pH-responsive nanocarriers to enable effective intratumoral penetration and reversal of multidrug resistance for augmented cancer treatments

Ziliang DongYu HaoQuguang LiZhijuan YangYujie ZhuZhuang LiuLiangzhu Feng( )
Institute of Functional Nano & Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
Show Author Information

Graphical Abstract

Abstract

Construction of multifunctional stimuli-responsive nanotherapeutics enabling improved intratumoral penetration of therapeutics and reversal of multiple-drug resistance (MDR) is potent to achieve effective cancer treatment. Herein, we report a general method to synthesize pH-dissociable calcium carbonate (CaCO3) hollow nanoparticles with amorphous CaCO3 as the template, gallic acid (GA) as the organic ligand, and ferrous ions as the metallic center via a one-pot coordination reaction. The obtained GA-Fe@CaCO3 exhibits high loading efficiencies to both oxidized cisplatin prodrug and doxorubicin, yielding drug loaded GA-Fe@CaCO3 nanotherapeutics featured in pH-responsive size shrinkage, drug release, and Fenton catalytic activity. Compared to non- responsive GA-Fe@silica nanoparticles prepared with silica nanoparticles as the template, such GA-Fe@CaCO3 confers significantly improved intratumoral penetration capacity. Moreover, both types of drug-loaded GA-Fe@CaCO3 nanotherapeutics exhibit synergistic therapeutic efficacies to corresponding MDR cancer cells because of the GA-Fe mediated intracellular oxidative stress amplification that could reduce the efflux of engulfed drugs by impairing the mitochondrial-mediated production of adenosine triphosphate (ATP). As a result, it is found that the doxorubicin loaded GA-Fe@CaCO3 exhibits superior therapeutic effect towards doxorubicin-resistant 4T1 breast tumors via combined chemodynamic and chemo-therapies. This work highlights the preparation of pH-dissociable CaCO3-based nanotherapeutics to enable effective tumor penetration for enhanced treatment of drug-resistant tumors.

Electronic Supplementary Material

Download File(s)
12274_2020_2972_MOESM1_ESM.pdf (5.4 MB)

References

[1]
Wicki, A.; Witzigmann, D.; Balasubramanian, V.; Huwyler, J. Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications. J. Control. Release 2015, 200, 138-157.
[2]
Bor, G.; Mat Azmi, I. D.; Yaghmur, A. Nanomedicines for cancer therapy: Current status, challenges and future prospects. Ther. Deliv. 2019, 10, 113-132.
[3]
Zhang, R. X.; Wong, H. L.; Xue, H. Y.; Eoh, J. Y.; Wu, X. Y. Nanomedicine of synergistic drug combinations for cancer therapy- Strategies and perspectives. J. Control. Release 2016, 240, 489-503.
[4]
Theocharis, A. D.; Skandalis, S. S.; Gialeli, C.; Karamanos, N. K. Extracellular matrix structure. Adv. Drug Deliver. Rev. 2016, 97, 4-27.
[5]
Heldin, C. H.; Rubin, K.; Pietras, K.; Östman, A. High interstitial fluid pressure—an obstacle in cancer therapy. Nat. Rev. Cancer 2004, 4, 806-813.
[6]
Böckelmann, L. C.; Schumacher, U. Targeting tumor interstitial fluid pressure: Will it yield novel successful therapies for solid tumors? Expert Opin. Ther. Targets 2019, 23, 1005-1014.
[7]
Chen, Q.; Wang, C.; Zhang, X. D.; Chen, G. J.; Hu, Q. Y.; Li, H. J.; Wang, J. Q.; Wen, D.; Zhang, Y. Q.; Lu, Y. F. et al. In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. Nat. Nanotechnol. 2019, 14, 89-97.
[8]
Minchinton, A. I.; Tannock, I. F. Drug penetration in solid tumours. Nat. Rev. Cancer 2006, 6, 583-592.
[9]
Zhou, Q.; Shao, S. Q.; Wang, J. Q.; Xu, C. H.; Xiang, J. J.; Piao, Y.; Zhou, Z. X.; Yu, Q. S.; Tang, J. B.; Liu, X. R. et al. Enzyme-activatable polymer-drug conjugate augments tumour penetration and treatment efficacy. Nat. Nanotechnol. 2019, 14, 799-809.
[10]
Sun, Y. Tumor microenvironment and cancer therapy resistance. Cancer Lett. 2016, 380, 205-215.
[11]
Wang, H. M.; Feng, Z. Q. Q.; Wu, D. D.; Fritzsching, K. J.; Rigney, M.; Zhou, J.; Jiang, Y. J.; Schmidt-Rohr, K.; Xu, B. Enzyme-regulated supramolecular assemblies of cholesterol conjugates against drug- resistant ovarian cancer cells. J. Am. Chem. Soc. 2016, 138, 10758-10761.
[12]
Wang, S.; Huang, P.; Chen, X. Y. Stimuli-responsive programmed specific targeting in nanomedicine. ACS Nano 2016, 10, 2991-2994.
[13]
Li, F. Y.; Lu, J. X.; Kong, X. Q.; Hyeon, T.; Ling, D. S. Dynamic nanoparticle assemblies for biomedical applications. Adv. Mater. 2017, 29, 1605897.
[14]
Sun, Q. X.; Ojha, T.; Kiessling, F.; Lammers, T.; Shi, Y. Enhancing tumor penetration of nanomedicines. Biomacromolecules 2017, 18, 1449-1459.
[15]
Li, H. J.; Du, J. Z.; Du, X. J.; Xu, C. F.; Sun, C. Y.; Wang, H. X.; Cao, Z. T.; Yang, X. Z.; Zhu, Y. H.; Nie, S. M. et al. Stimuli-responsive clustered nanoparticles for improved tumor penetration and therapeutic efficacy. Proc. Natl. Acad. Sci. USA 2016, 113, 4164-4169.
[16]
Markman, J. L.; Rekechenetskiy, A.; Holler, E.; Ljubimova, J. Y. Nanomedicine therapeutic approaches to overcome cancer drug resistance. Adv. Drug Deliver. Rev. 2013, 65, 1866-1879.
[17]
Mou, Q. B.; Ma, Y.; Ding, F.; Gao, X. H.; Yan, D. Y.; Zhu, X. Y.; Zhang, C. Two-in-one chemogene assembled from drug-integrated antisense oligonucleotides to reverse chemoresistance. J. Am. Chem. Soc. 2019, 141, 6955-6966.
[18]
Szakács, G.; Paterson, J. K.; Ludwig, J. A.; Booth-Genthe, C.; Gottesman, M. M. Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov. 2006, 5, 219-234.
[19]
Gottesman, M. M.; Fojo, T.; Bates, S. E. Multidrug resistance in cancer: Role of ATP-dependent transporters. Nat. Rev. Cancer 2002, 2, 48-58.
[20]
Wang, H.; Gao, Z.; Liu, X. Y.; Agarwal, P.; Zhao, S. T.; Conroy, D. W.; Ji, G.; Yu, J. H.; Jaroniec, C. P.; Liu, Z. G. et al. Targeted production of reactive oxygen species in mitochondria to overcome cancer drug resistance. Nat. Commun. 2018, 9, 562.
[21]
Zhang, C.; Bu, W. B.; Ni, D. L.; Zhang, S. J.; Li, Q.; Yao, Z. W.; Zhang, J. W.; Yao, H. L.; Wang, Z.; Shi, J. L. Synthesis of iron nanometallic glasses and their application in cancer therapy by a localized Fenton reaction. Angew. Chem., Int. Ed. 2016, 55, 2101-2106.
[22]
Tang, Z. M.; Liu, Y. Y.; He, M. Y.; Bu, W. B. Chemodynamic therapy: Tumour microenvironment-mediated Fenton and Fenton-like reactions. Angew. Chem., Int. Ed. 2019, 58, 946-956.
[23]
Liu, Y.; Zhen, W. Y.; Wang, Y. H.; Liu, J. H.; Jin, L. H.; Zhang, T. Q.; Zhang, S. T.; Zhao, Y.; Song, S. Y.; Li, C. Y. et al. One-dimensional Fe2P acts as a fenton agent in response to nir ii light and ultrasound for deep tumor synergetic theranostics. Angew. Chem., Int. Ed. 2019, 58, 2407-2412.
[24]
Xue, C. C.; Li, M. H.; Zhao, Y.; Zhou, J.; Hu, Y.; Cai, K. Y.; Zhao, Y. L.; Yu, S. H.; Luo, Z. Tumor microenvironment-activatable Fe- doxorubicin preloaded amorphous CaCO3 nanoformulation triggers ferroptosis in target tumor cells. Sci. Adv. 2020, 6, eaax1346.
[25]
Brookes, P. S.; Yoon, Y.; Robotham, J. L.; Anders, M. W.; Sheu, S. S. Calcium, ATP, and ROS: A mitochondrial love-hate triangle. Am. J. Physiol. Cell Physiol. 2004, 287, C817-C833.
[26]
Dong, Z. L.; Feng, L. Z.; Zhu, W. W.; Sun, X. Q.; Gao, M.; Zhao, H.; Chao, Y.; Liu, Z. CaCO3 nanoparticles as an ultra-sensitive tumor-pH- responsive nanoplatform enabling real-time drug release monitoring and cancer combination therapy. Biomaterials 2016, 110, 60-70.
[27]
Zhao, Y.; Luo, Z.; Li, M. H.; Qu, Q. Y.; Ma, X.; Yu, S. H.; Zhao, Y. L. A preloaded amorphous calcium carbonate/doxorubicin@silica nanoreactor for pH-responsive delivery of an anticancer drug. Angew. Chem., Int. Ed. 2015, 54, 919-922
[28]
Dong, Z. L.; Feng, L. Z.; Chao, Y.; Hao, Y.; Chen, M. C.; Gong, F.; Han, X.; Zhang, R.; Cheng, L.; Liu, Z. Amplification of tumor oxidative stresses with liposomal fenton catalyst and glutathione inhibitor for enhanced cancer chemotherapy and radiotherapy. Nano Lett. 2018, 19, 805-815.
[29]
Wang, H. R.; Zhu, W. W.; Feng, L. Z.; Chen, Q.; Chao, Y.; Dong, Z. L.; Liu, Z. Nanoscale covalent organic polymers as a biodegradable nanomedicine for chemotherapy-enhanced photodynamic therapy of cancer. Nano Res. 2018, 11, 3244-3257.
[30]
Vyas, S.; Zaganjor, E.; Haigis, M. C. Mitochondria and cancer. Cell 2016, 166, 555-566.
[31]
Feng, L. Z.; Dong, Z. L.; Tao, D. L.; Zhang, Y. C.; Liu, Z. The acidic tumor microenvironment: A target for smart cancer nano-theranostics. Natl. Sci. Rev. 2017, 5, 269-286.
[32]
Wong, C.; Stylianopoulos, T.; Cui, J.; Martin, J.; Chauhan, V. P.; Jiang, W.; Popović, Z.; Jain, R. K.; Bawendi, M. G.; Fukumura, D. Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proc. Natl. Acad. Sci. USA 2011, 108, 2426-2431.
[33]
Dreher, M. R.; Liu, W. G.; Michelich, C. R.; Dewhirst, M. W.; Yuan, F.; Chilkoti, A. Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J. Natl. Cancer Inst. 2006, 98, 335-344.
[34]
Alexis, F.; Pridgen, E.; Molnar, L. K.; Farokhzad, O. C. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharmaceutics 2008, 5, 505-515.
[35]
Zhang, Y. N.; Poon, W.; Tavares, A. J.; McGilvray, I. D.; Chan, W. C. W. Nanoparticle-liver interactions: Cellular uptake and hepatobiliary elimination. J. Control. Release 2016, 240, 332-348.
[36]
Pan, L. M.; He, Q. J.; Liu, J. N.; Chen, Y.; Ma, M.; Zhang, L. L.; Shi, J. L. Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles. J. Am. Chem. Soc. 2012, 134, 5722-5725.
[37]
Feng, L. Z.; Gao, M.; Tao, D. L.; Chen, Q.; Wang, H. R.; Dong, Z. L.; Chen, M. W.; Liu, Z. Cisplatin-prodrug-constructed liposomes as a versatile theranostic nanoplatform for bimodal imaging guided combination cancer therapy. Adv. Funct. Mater. 2016, 26, 2207-2217.
[38]
Dong, Z. L.; Gong, H.; Gao, M.; Zhu, W. W.; Sun, X. Q.; Feng, L. Z.; Fu, T. T.; Li, Y. G.; Liu, Z. Polydopamine nanoparticles as a versatile molecular loading platform to enable imaging-guided cancer combination therapy. Theranostics 2016, 6, 1031-1042.
[39]
Chen, Q.; Feng, L. Z.; Liu, J. J.; Zhu, W. W.; Dong, Z. L.; Wu, Y. F.; Liu, Z. Intelligent albumin-MnO2 nanoparticles as pH-/H2O2- responsive dissociable nanocarriers to modulate tumor hypoxia for effective combination therapy. Adv. Mater. 2016, 28, 7129-7136.
[40]
Liu, J. J.; Wang, H. R.; Yi, X.; Chao, Y.; Geng, Y. H.; Xu, L. G.; Yang, K.; Liu, Z. pH-sensitive dissociable nanoscale coordination polymers with drug loading for synergistically enhanced chemoradiotherapy. Adv. Funct. Mater. 2017, 27, 1703832.
Nano Research
Pages 3057-3067
Cite this article:
Dong Z, Hao Y, Li Q, et al. Metal-polyphenol-network coated CaCO3 as pH-responsive nanocarriers to enable effective intratumoral penetration and reversal of multidrug resistance for augmented cancer treatments. Nano Research, 2020, 13(11): 3057-3067. https://doi.org/10.1007/s12274-020-2972-9
Topics:

836

Views

44

Crossref

N/A

Web of Science

44

Scopus

1

CSCD

Altmetrics

Received: 22 May 2020
Revised: 04 July 2020
Accepted: 05 July 2020
Published: 15 August 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return