AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Atomic-scaled surface engineering Ni-Pt nanoalloys towards enhanced catalytic efficiency for methanol oxidation reaction

Aixian Shan1,2Shuoyuan Huang1Haofei Zhao1Wengui Jiang1Xueai Teng1Yingchun Huang3Chinping Chen2( )Rongming Wang1( )Woon-Ming Lau1,3( )
Beijing Advanced Innovation Center for Materials Genome Engineering, Center for Green Innovation, Beijing Key Laboratory for Magneto- Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
Department of Physics, Peking University, Beijing 100871, China
Shunde Graduate School of University of Science and Technology Beijing, Foshan 528300, China
Show Author Information

Graphical Abstract

Abstract

Surface engineering is known as an effective strategy to enhance the catalytic properties of Pt-based nanomaterials. Herein, we report on surface engineering Ni-Pt nanoalloys with a facile method by varying the Ni doping concentration and oleylamine/oleic- acid surfactant-mix. The alloy-composition, exposed facet condition, and surface lattice strain are, thereby manipulated to optimize the catalytic efficiency of such nanoalloys for methanol oxidation reaction (MOR). Exemplary nanoalloys including Ni0.69Pt0.31 truncated octahedrons, Ni0.45Pt0.55 nanomultipods and Ni0.20Pt0.80 nanoflowers are thoroughly characterized, with a commercial Pt/C catalyst as a common benchmark. Their variations in MOR catalytic efficiency are significant: 2.2 A/mgPt for Ni0.20Pt0.80 nanoflowers, 1.2 A/mgPt for Ni0.45Pt0.55 nanomultipods, 0.7 A/mgPt for Ni0.69Pt0.31 truncated octahedrons, and 0.6 A/mgPt for the commercial Pt/C catalysts. Assisted by density functional theory calculations, we correlate these observed catalysis-variations particularly to the intriguing presence of surface interplanar-strains, such as {111} facets with an interplanar-tensile-strain of 2.6% and {200} facets with an interplanar-tensile-strain of 3.5%, on the Ni0.20Pt0.80 nanoflowers.

Electronic Supplementary Material

Download File(s)
12274_2020_2978_MOESM1_ESM.pdf (4 MB)

References

[1]
Shao, Q.; Wang, P. T.; Zhu, T.; Huang, X. Q. Low dimensional platinum-based bimetallic nanostructures for advanced catalysis. Acc. Chem. Res. 2019, 52, 3384-3396.
[2]
Zhang, X. B.; Han, S. B.; Zhu, B. E.; Zhang, G. H.; Li, X. Y.; Gao, Y.; Wu, Z. X.; Yang, B.; Liu, Y. F.; Baaziz, W. et al. Reversible loss of core-shell structure for Ni-Au bimetallic nanoparticles during CO2 hydrogenation. Nat. Catal. 2020, 3, 411-417.
[3]
Wang, R. M. The dynamics of the peel. Nat. Catal. 2020, 3, 333-334.
[4]
Shan, A. X.; Chen, C. P.; Zhang, W.; Cheng, D. J.; Shen, X.; Yu, R. C.; Wang, R. M. Giant enhancement and anomalous temperature dependence of magnetism in monodispersed NiPt2 nanoparticles. Nano Res. 2017, 10, 3238-3247.
[5]
Zhang, L.; Doyle-Davis, K.; Sun, X. L. Pt-Based electrocatalysts with high atom utilization efficiency: From nanostructures to single atoms. Energy Environ. Sci. 2019, 12, 492-517.
[6]
Tian, N.; Lu, B. A.; Yang, X. D.; Huang, R.; Jiang, Y. X.; Zhou, Z. Y.; Sun, S. G. Rational design and synthesis of low-temperature fuel cell electrocatalysts. Electrochem. Energy Rev. 2018, 1, 54-83.
[7]
Kong, F. P.; Liu, S. H.; Li, J. J.; Du, L.; Banis, M. N.; Zhang, L.; Chen, G. Y.; Doyle-Davis, K.; Liang, J. N.; Wang, S. Z. et al. Trimetallic Pt-Pd-Ni octahedral nanocages with subnanometer thick-wall towards high oxygen reduction reaction. Nano Energy 2019, 64, 103890.
[8]
Kong, F. P.; Du, C. Y.; Ye, J. Y.; Chen, G. Y.; Du, L.; Yin, G. P. Selective surface engineering of heterogeneous nanostructures: In situ unraveling of the catalytic mechanism on Pt-Au catalyst. Acs Catal. 2017, 7, 7923-7929.
[9]
Puangsombut, P.; Tantavichet, N. Effect of plating bath composition on chemical composition and oxygen reduction reaction activity of electrodeposited Pt-Co catalysts. Rare Metals 2019, 38, 95-106.
[10]
Liu, H. L.; Nosheen, F.; Wang, X. Noble metal alloy complex nanostructures: Controllable synthesis and their electrochemical property. Chem. Soc. Rev. 2015, 44, 3056-3078.
[11]
Xia, Y. N.; Xia, X. H.; Peng, H. C. Shape-controlled synthesis of colloidal metal nanocrystals: Thermodynamic versus kinetic products. J. Am. Chem. Soc. 2015, 137, 7947-7966.
[12]
Zhang, H. T.; Ding, J.; Chow, G. M. Morphological control of synthesis and anomalous magnetic properties of 3-D branched Pt nanoparticles. Langmuir 2008, 24, 375-378.
[13]
Shan, A. X.; Chen, Z. C.; Li, B. Q.; Chen, C. P.; Wang, R. M. Monodispersed, ultrathin NiPt hollow nanospheres with tunable diameter and composition via a green chemical synthesis. J. Mater. Chem. A 2015, 3, 1031-1036.
[14]
Shan, A. X.; Cheng, M.; Fan, H. S.; Chen, Z. C.; Wang, R. M.; Chen, C. P. NiPt hollow nanocatalyst: Green synthesis, size control and electrocatalysis. Prog. Nat. Sci. Mater. Int. 2014, 24, 175-178.
[15]
Shan, A. X.; Wu, X.; Lu, J.; Chen, C. P.; Wang, R. M. Phase formations and magnetic properties of single crystal nickel ferrite (NiFe2O4) with different morphologies. CrystEngComm 2015, 17, 1603-1608.
[16]
Yin, Y. D.; Alivisatos, A. P. Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 2005, 437, 664-670.
[17]
Chiu, C. Y.; Li, Y. J.; Ruan, L. Y.; Ye, X. C.; Murray, C. B.; Huang, Y. Platinum nanocrystals selectively shaped using facet-specific peptide sequences. Nat. Chem. 2011, 3, 393-399.
[18]
Ding, J. B.; Bu, L. Z.; Guo, S. J.; Zhao, Z. P.; Zhu, E. B.; Huang, Y.; Huang, X. Q. Morphology and phase controlled construction of Pt-Ni nanostructures for efficient electrocatalysis. Nano Lett. 2016, 16, 2762-2767.
[19]
Li, M. F.; Zhao, Z. P.; Cheng, T.; Fortunelli, A.; Chen, C. Y.; Yu, R.; Zhang, Q. H.; Gu, L.; Merinov, B. V.; Lin, Z. Y. et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 2016, 354, 1414-1419.
[20]
Kong, F. P.; Ren, Z. H.; Banis, M. N.; Du, L.; Zhou, X.; Chen, G. Y.; Zhang, L.; Li, J. J.; Wang, S. Z.; Li, M. S. et al. Active and stable Pt-Ni alloy octahedra catalyst for oxygen reduction via near-surface atomical engineering. ACS Catal. 2020, 10, 4205-4214.
[21]
Tian, X. L.; Zhao, X.; Su, Y. Q.; Wang, L. J.; Wang, H. M.; Dang, D.; Chi, B.; Liu, H. F.; Hensen, E. J. M.; Lou, X. W. et al. Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science 2019, 366, 850-856.
[22]
Bu, L. Z.; Guo, S. J.; Zhang, X.; Shen, X.; Su, D.; Lu, G.; Zhu, X.; Yao, J. L.; Guo, J.; Huang, X. Q. Surface engineering of hierarchical platinum-cobalt nanowires for efficient electrocatalysis. Nat. Commun. 2016, 7, 11850.
[23]
Jamil, R.; Sohail, M.; Baig, N.; Ansari, M. S.; Ahmed, R. Synthesis of hollow Pt-Ni nanoboxes for highly efficient methanol oxidation. Sci. Rep. 2019, 9, 15273.
[24]
Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly Crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339-1343.
[25]
Huang, X. Q.; Zhao, Z. P.; Cao, L.; Chen, Y.; Zhu, E. B.; Lin, Z. Y.; Li, M. F.; Yan, A. M.; Zettl, A.; Wang, Y. M. et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 2015, 348, 1230-1234.
[26]
Lim, B.; Lu, X. M.; Jiang, M. J.; Camargo, P. H. C.; Cho, E. C.; Lee, E. P.; Xia, Y. N. Facile synthesis of highly faceted multioctahedral Pt nanocrystals through controlled overgrowth. Nano Lett. 2008, 8, 4043-4047.
[27]
Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.; Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 2007, 316, 732-735.
[28]
Luo, M. C.; Sun, Y. J.; Zhang, X.; Qin, Y. N.; Li, M. Q.; Li, Y. J.; Li, C. J.; Yang, Y.; Wang, L.; Gao, P. et al. Stable high-index faceted Pt Skin on zigzag-Like PtFe nanowires enhances oxygen reduction catalysis. Adv. Mater. 2018, 30, 1705515.
[29]
Wang, X.; Choi, S. I.; Roling, L. T.; Luo, M.; Ma, C.; Zhang, L.; Chi, M. F.; Liu, J. Y.; Xie, Z. X.; Herron, J. A. et al. Palladium-platinum core-shell icosahedra with substantially enhanced activity and durability towards oxygen reduction. Nat. Commun. 2015, 6, 7594.
[30]
Wang, H. T.; Xu, S. C.; Tsai, C.; Li, Y. Z.; Liu, C.; Zhao, J.; Liu, Y. Y.; Yuan, H. Y.; Abild-Pedersen, F.; Prinz, F. B. et al. Direct and continuous strain control of catalysts with tunable battery electrode materials. Science 2016, 354, 1031-1036.
[31]
Feng, Q. C.; Zhao, S.; He, D. S.; Tian, S. B.; Gu, L.; Wen, X. D.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Strain engineering to enhance the electrooxidation performance of atomic-layer Pt on intermetallic Pt3Ga. J. Am. Chem. Soc. 2018, 140, 2773-2776.
[32]
Sun, Y. H.; Zhao, H. F.; Zhou, D.; Zhu, Y. C.; Ye, H. Y.; Moe, Y. A.; Wang, R. M. Direct observation of epitaxial alignment of Au on MoS2 at atomic resolution. Nano Res. 2019, 12, 947-954.
[33]
Asano, M.; Kawamura, R.; Sasakawa, R.; Todoroki, N.; Wadayama, T. Oxygen reduction reaction activity for strain-controlled Pt-based model alloy catalysts: Surface strains and direct electronic effects induced by alloying elements. ACS Catal. 2016, 6, 5285-5289.
[34]
Wang, R. M.; Dmitrieva, O.; Farle, M.; Dumpich, G.; Ye, H. Q.; Poppa, H.; Kilaas, R.; Kisielowski, C. Layer resolved structural relaxation at the surface of magnetic FePt icosahedral nanoparticles. Phys. Rev. Lett. 2008, 100, 017205.
[35]
Wang, R. M.; Dmitrieva, O.; Farle, M.; Dumpich, G.; Acet, M.; Mejia-Rosales, S.; Perez-Tijerina, E.; Yacaman, M. J.; Kisielowski, C. FePt icosahedra with magnetic cores and catalytic shells. J. Phys. Chem. C 2009, 113, 4395-4400.
[36]
Luo, M. C.; Guo, S. J. Strain-controlled electrocatalysis on multimetallic nanomaterials. Nat. Rev. Mater. 2017, 2, 17059.
[37]
Zou, L. L.; Fan, J.; Zhou, Y.; Wang, C. M.; Li, J.; Zou, Z. Q.; Yang, H. Conversion of PtNi alloy from disordered to ordered for enhanced activity and durability in methanol-tolerant oxygen reduction reactions. Nano Res. 2015, 8, 2777-2788.
[38]
Vegard, L. Die konstitution der mischkristalle und die raumfüllung der atome. Z. Physik. 1921, 5, 17-26.
[39]
Teng, X. A.; Shan, A. X.; Zhu, Y. C.; Wang, R. M.; Lau, W. M. Promoting methanol-oxidation-reaction by loading PtNi nano-catalysts on natural graphitic-nano-carbon. Electrochim. Acta 2020, 353, 136542.
[40]
Tian, X. L.; Wang, L. J.; Deng, P. L.; Chen, Y.; Xia, B. Y. Research advances in unsupported Pt-based catalysts for electrochemical methanol oxidation. J. Energy Chem. 2017, 26, 1067-1076.
[41]
Lim, S. I.; Varón, M.; Ojea-Jiménez, I.; Arbiol, J.; Puntes, V. Exploring the limitations of the use of competing reducers to control the morphology and composition of Pt and PtCo nanocrystals. Chem. Mater. 2010, 22, 4495-4504.
[42]
Chung, D. Y.; Yoo, J. M.; Sung, Y. E. Highly durable and active Pt-based nanoscale design for fuel-cell oxygen-reduction electrocatalysts. Adv. Mater. 2018, 30, 1704123.
[43]
Watt, J.; Young, N.; Haigh, S.; Kirkland, A.; Tilley, R. D. Synthesis and structural characterization of branched palladium nanostructures. Adv. Mater. 2009, 21, 2288-2293.
[44]
Watt, J.; Cheong, S.; Toney, M. F.; Ingham, B.; Cookson, J.; Bishop, P. T.; Tilley, R. D. Ultrafast growth of highly branched palladium nanostructures for catalysis. ACS Nano 2010, 4, 396-402.
[45]
Mourdikoudis, S.; Liz-Marzán L. M. Oleylamine in nanoparticle synthesis. Chem. Mater. 2013, 25, 1465-1476.
[46]
Hong, X. L.; Li, M.; Bao, N. N.; Peng, E.; Li, W. M.; Xue, J. M.; Ding, J. Synthesis of FeCo nanoparticles from FeO(OH) and Co3O4 using oleic acid as reduction agent. J. Nanopart. Res. 2014, 16, 1935.
[47]
Kim, D.; Park, J.; An, K.; Yang, N. K.; Park, J. G.; Hyeon, T. Synthesis of hollow iron nanoframes. J. Am. Chem. Soc. 2007, 129, 5812-5813.
[48]
Yin, X.; Shi, M.; Wu, J. B.; Pan, Y. T.; Gray, D. L.; Bertke, J. A.; Yang, H. Quantitative analysis of different formation modes of platinum nanocrystals controlled by ligand chemistry. Nano Lett. 2017, 17, 6146-6150.
[49]
Yu, Y. S.; Yang, W. W.; Sun, X. L.; Zhu, W. L.; Li, X. Z.; Sellmyer, D. J.; Sun, S. H. Monodisperse MPt (M = Fe, Co, Ni, Cu, Zn) nanoparticles prepared from a facile oleylamine reduction of metal salts. Nano Lett. 2014, 14, 2778-2782.
[50]
Lu, S. Q.; Li, H. M.; Sun, J. Y.; Zhuang, Z. B. Promoting the methanol oxidation catalytic activity by introducing surface nickel on platinum nanoparticles. Nano Res. 2018, 11, 2058-2068.
[51]
Elsherif, S. A.; El Sawy, E. N.; Ghany, N. A. A. Polyol synthesized graphene/PtxNi100-x nanoparticles alloy for improved electrocatalytic oxidation of methanol in acidic and basic media. J. Electroanal. Chem. 2020, 856, 113601.
[52]
Gong, W. H.; Jiang, Z.; Wu, R. F.; Liu, Y.; Huang, L.; Hu, N.; Tsiakaras, P.; Shen, P. K. Cross-double dumbbell-like Pt-Ni nanostructures with enhanced catalytic performance toward the reactions of oxygen reduction and methanol oxidation. Appl. Catal. B Environ. 2019, 246, 277-283.
[53]
Yang, L. N.; Song, X. H.; Qi, M. L.; Xia, L. X.; Jin, M. S. Templated high-yield synthesis of Pt nanorods enclosed by high-index {311} facets for methanol selective oxidation. J. Mater. Chem. A 2013, 1, 7316-7320.
[54]
Huang, S. Y.; Shan, A. X.; Wang, R. M. Low Pt alloyed nanostructures for fuel cells catalysts. Catalysts 2018, 8, 538.
Nano Research
Pages 3088-3097
Cite this article:
Shan A, Huang S, Zhao H, et al. Atomic-scaled surface engineering Ni-Pt nanoalloys towards enhanced catalytic efficiency for methanol oxidation reaction. Nano Research, 2020, 13(11): 3088-3097. https://doi.org/10.1007/s12274-020-2978-3
Topics:

1041

Views

54

Crossref

N/A

Web of Science

54

Scopus

11

CSCD

Altmetrics

Received: 26 May 2020
Revised: 08 July 2020
Accepted: 09 July 2020
Published: 18 August 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return