AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Scalable salt-templated directed synthesis of high-quality MoS2 nanosheets powders towards energetic and environmental applications

Lijie ZhuPengfei YangYahuan HuanShuangyuan PanZhaoqian ZhangFangfang CuiYuping ShiShaolong JiangChunyu XieMin HongJiatian FuJingyi HuYanfeng Zhang( )
Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
Show Author Information

Graphical Abstract

Abstract

Two-dimensional (2D) transition metal dichalcogenides (TMDCs) have emerged as perfect platforms for developing applications in nano-electronics, catalysis, energy storage and environmental-related fields due to their superior properties. However, the low-cost, batch production of high-quality 2D TMDCs remains a huge challenge with the existing synthetic strategies. Herein, we present a scalable chemical vapor deposition (CVD) approach for the batch production of high-quality MoS2 nanosheet powders, by using naturally abundant, water-soluble and recyclable NaCl crystal powders as templates. The high-quality MoS2 nanosheets powders are achieved by a facile water dissolution-filtration process, by virtue of the excellent dispersibility of the as-grown products in water. The internal mechanism for the scalable synthesis strategy is explored. The applications of the MoS2 nanosheets powders are also demonstrated as catalysts or adsorbents in hydrogen evolution reaction (HER) and organic dyes adsorption, respectively. This work should hereby pave ways for the mass production and application of powdery TMDCs in energetic and environmental related fields.

Electronic Supplementary Material

Download File(s)
12274_2020_2979_MOESM1_ESM.pdf (3.5 MB)

References

[1]
Alexeev, E. M.; Ruiz-Tijerina, D. A.; Danovich, M.; Hamer, M. J.; Terry, D. J.; Nayak, P. K.; Ahn, S.; Pak, S.; Lee, J.; Sohn, J. I. et al. Resonantly hybridized excitons in moire superlattices in van der Waals heterostructures. Nature 2019, 567, 81-86.
[2]
Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263-275.
[3]
Yu, S. L.; Wu, X. Q.; Wang, Y. P.; Guo, X.; Tong, L. M. 2D materials for optical modulation: Challenges and opportunities. Adv. Mater. 2017, 29, 1606128.
[4]
Chowdhury, T.; Kim, J.; Sadler, E. C.; Li, C. Y.; Lee, S. W.; Jo, K.; Xu, W. N.; Gracias, D. H.; Drichko, N. V.; Jariwala, D. et al. Substrate- directed synthesis of MoS2 nanocrystals with tunable dimensionality and optical properties. Nat. Nanotechnol. 2020, 15, 29-34.
[5]
Jiang, J. Z.; Li, N.; Zou, J.; Zhou, X.; Eda, G.; Zhang, Q. F.; Zhang, H.; Li, L. J.; Zhai, T. Y.; Wee, A. T. S. Synergistic additive-mediated CVD growth and chemical modification of 2D materials. Chem. Soc. Rev. 2019, 48, 4639-4654.
[6]
Jin, C. H.; Regan, E. C.; Yan, A. M.; Iqbal Bakti Utama, M.; Wang, D. Q.; Zhao, S. H.; Qin, Y.; Yang, S. J.; Zheng, Z. R.; Shi, S. Y. et al. Observation of moire excitons in WSe2/WS2 heterostructure superlattices. Nature 2019, 567, 76-80.
[7]
Liu, Y.; Guo, J.; Zhu, E. B.; Liao, L.; Lee, S. J.; Ding, M. N.; Shakir, I.; Gambin, V.; Huang, Y.; Duan, X. F. Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. Nature 2018, 557, 696-700.
[8]
Paik, E. Y.; Zhang, L.; Burg, G. W.; Gogna, R.; Tutuc, E.; Deng, H. Interlayer exciton laser of extended spatial coherence in atomically thin heterostructures. Nature 2019, 576, 80-84.
[9]
Kurapati, R.; Kostarelos, K.; Prato, M.; Bianco, A. Biomedical uses for 2D materials beyond graphene: Current advances and challenges ahead. Adv. Mater. 2016, 28, 6052-6074.
[10]
Tang, L.; Meng, X. G.; Deng, D. H.; Bao, X. H. Confinement catalysis with 2D materials for energy conversion. Adv. Mater. 2019, 31, 1901996.
[11]
Chang, K.; Hai, X.; Pang, H.; Zhang, H. B.; Shi, L.; Liu, G. G.; Liu, H. M.; Zhao, G. X.; Li, M.; Ye, J. H. Targeted synthesis of 2H- and 1T- Phase MoS2 monolayers for catalytic hydrogen evolution. Adv. Mater. 2016, 28, 10033-10041.
[12]
Huang, L. B.; Zhao, L.; Zhang, Y.; Chen, Y. Y.; Zhang, Q. H.; Luo, H.; Zhang, X.; Tang, T.; Gu, L.; Hu, J. S. Self-limited on-site conversion of MoO3 nanodots into vertically aligned ultrasmall monolayer MoS2 for efficient hydrogen evolution. Adv. Energy Mater. 2018, 8, 1800734.
[13]
Tan, Y. W.; Liu, P.; Chen, L. Y.; Cong, W. T.; Ito, Y.; Han, J. H.; Guo, X. W.; Tang, Z.; Fujita, T.; Hirata, A. et al. Monolayer MoS2 films supported by 3D nanoporous metals for high-efficiency electrocatalytic hydrogen production. Adv. Mater. 2014, 26, 8023-8028.
[14]
Long, H.; Harley-Trochimczyk, A.; Pham, T.; Tang, Z. R.; Shi, T. L.; Zettl, A.; Carraro, C.; Worsley, M. A.; Maboudian, R. High surface area MoS2/graphene hybrid aerogel for ultrasensitive NO2 detection. Adv. Funct. Mater. 2016, 26, 5158-5165.
[15]
Chou, S. S.; Kaehr, B.; Kim, J.; Foley, B. M.; De, M.; Hopkins, P. E.; Huang, J. X.; Brinker, C. J.; Dravid, V. P. Chemically exfoliated MoS2 as near-infrared photothermal agents. Angew. Chem., Int. Ed. 2013, 52, 4160-4164.
[16]
Yang, P. F.; Zhang, Z. P.; Sun, M. X.; Lin, F.; Cheng, T.; Shi, J. P.; Xie, C. Y.; Shi, Y. P.; Jiang, S. L.; Huan, Y. H. et al. Thickness tunable wedding-cake-like MoS2 flakes for high-performance optoelectronics. ACS Nano 2019, 13, 3649-3658.
[17]
Zeng, Z. Y.; Yin, Z. Y.; Huang, X.; Li, H.; He, Q. Y.; Lu, G.; Boey, F.; Zhang, H. Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew. Chem., Int. Ed. 2011, 123, 11289-11293.
[18]
Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M. W.; Chhowalla, M. Photoluminescence from chemically exfoliated MoS2. Nano Lett. 2011, 11, 5111-5116.
[19]
Voiry, D.; Salehi, M.; Silva, R.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G.; Chhowalla, M. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 2013, 13, 6222-6227.
[20]
Lin, Z. Y.; Liu, Y.; Halim, U.; Ding, M. N.; Liu, Y. Y.; Wang, Y. L.; Jia, C. C.; Chen, P.; Duan, X. D.; Wang, C. et al. Solution-processable 2D semiconductors for high-performance large-area electronics. Nature 2018, 562, 254-258.
[21]
Kang, K.; Xie, S. E.; Huang, L. J.; Han, Y. M.; Huang, P. Y.; Mak, K. F.; Kim, C. J.; Muller, D.; Park, J. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 2015, 520, 656-660.
[22]
Yu, H.; Liao, M. Z.; Zhao, W. J.; Liu, G. D.; Zhou, X. J.; Wei, Z.; Xu, X. Z.; Liu, K. H.; Hu, Z. H.; Deng, K. et al. Wafer-scale growth and transfer of highly-oriented monolayer MoS2 continuous films. ACS Nano 2017, 11, 12001-12007.
[23]
Yang, P. F.; Zou, X. L.; Zhang, Z. P.; Hong, M.; Shi, J. P.; Chen, S. L.; Shu, J. P.; Zhao, L. Y.; Jiang, S. L.; Zhou, X. B. et al. Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass. Nat. Commun. 2018, 9, 979.
[24]
Chen, K.; Li, C.; Shi, L. R.; Gao, T.; Song, X. J.; Bachmatiuk, A.; Zou, Z. Y.; Deng, B.; Ji, Q. Q.; Ma, D. L. et al. Growing three- dimensional biomorphic graphene powders using naturally abundant diatomite templates towards high solution processability. Nat. Commun. 2016, 7, 13440.
[25]
Shi, L. R.; Chen, K.; Du, R.; Bachmatiuk, A.; Rümmeli, M. H.; Xie, K. W.; Huang, Y. Y.; Zhang, Y. F.; Liu, Z. F. Scalable seashell-based chemical vapor deposition growth of three-dimensional graphene foams for oil-water separation. J. Am. Chem. Soc. 2016, 138, 6360-6363.
[26]
Shi, L. R.; Pang, C. L.; Chen, S. L.; Wang, M. Z.; Wang, K. X.; Tan, Z. J.; Gao, P.; Ren, J. G.; Huang, Y. Y.; Peng, H. L. et al. Vertical graphene growth on SiO microparticles for stable lithium ion battery anodes. Nano Lett. 2017, 17, 3681-3687.
[27]
Chen, K.; Chai, Z. G.; Li, C.; Shi, L. R.; Liu, M. X.; Xie, Q.; Zhang, Y. F.; Xu, D. S.; Manivannan, A.; Liu, Z. F. Catalyst-free growth of three-dimensional graphene flakes and graphene/g-C3N4 Composite for hydrocarbon oxidation. ACS Nano 2016, 10, 3665-3673.
[28]
Xiao, X.; Yu, H. M.; Jin, H. Y.; Wu, M. H.; Fang, Y. S.; Sun, J. Y.; Hu, Z. M.; Li, T. Q.; Wu, J. B.; Huang, L. et al. Salt-templated synthesis of 2D metallic MoN and other nitrides. ACS Nano 2017, 11, 2180-2186.
[29]
Shi, L. R.; Chen, K.; Du, R.; Bachmatiuk, A.; Rümmeli, M. H.; Priydarshi, M. K.; Zhang, Y. F.; Manivannan, A.; Liu, Z. F. Direct synthesis of few-layer graphene on NaCl crystals. Small 2015, 11, 6302-6308.
[30]
Xiao, X.; Song, H. B.; Lin, A. Z.; Zhou, Y.; Zhan, X. J.; Hu, Z. M.; Zhang, Q.; Sun, J. Y.; Yang, B.; Li, T. Q. et al. Scalable salt-templated synthesis of two-dimensional transition metal oxides. Nat. Commun. 2016, 7, 11296.
[31]
Wei, N.; Yu, L. H.; Sun, Z. T.; Song, Y. Z.; Wang, M. L.; Tian, Z. N.; Xia, Y.; Cai, J. S.; Li, Y. Y.; Zhao, L. et al. Scalable salt-templated synthesis of nitrogen-doped graphene nanosheets toward printable energy storage. ACS Nano 2019, 13, 7517-7526.
[32]
Jin, H. R.; Hu, Z. M.; Li, T. Q.; Huang, L.; Wan, J.; Xue, G. B.; Zhou, J. Mass production of high-quality transition metal dichalcogenides nanosheets via a molten salt method. Adv. Funct. Mater. 2019, 29, 1900649.
[33]
Zhou, J. D.; Lin, J. H.; Huang, X. W.; Zhou, Y.; Chen, Y.; Xia, J.; Wang, H.; Xie, Y.; Yu, H. M.; Lei, J. C. et al. A library of atomically thin metal chalcogenides. Nature 2018, 556, 355-359.
[34]
Han, W.; Liu, K. L.; Yang, S. J.; Wang, F. K.; Su, J. W.; Jin, B.; Li, H. Q.; Zhai, T. Y. Salt-assisted chemical vapor deposition of two- dimensional materials. Sci. China Chem. 2019, 62, 1300-1311.
[35]
Wang, X. S.; Feng, H. B.; Wu, Y. M.; Jiao, L. Y. Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition. J. Am. Chem. Soc. 2013, 135, 5304-5307.
[36]
Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater. 2012, 22, 1385-1390.
[37]
Chen, J. Y.; Tang, W.; Tian, B. B.; Liu, B.; Zhao, X. X.; Liu, Y. P.; Ren, T. H.; Liu, W.; Geng, D. C.; Jeong, H. Y. et al. Chemical vapor deposition of high-quality large-sized MoS2 crystals on silicon dioxide substrates. Adv. Sci. 2016, 3, 1500033.
[38]
Lin, Z. Y.; Huang, Y.; Duan, X. F. Van der Waals thin-film electronics. Nat. Electron. 2019, 2, 378-388.
[39]
McManus, D.; Vranic, S.; Withers, F.; Sanchez-Romaguera, V.; Macucci, M.; Yang, H. F.; Sorrentino, R.; Parvez, K.; Son, S. K.; Iannaccone, G. et al. Water-based and biocompatible 2D crystal inks for all-inkjet-printed heterostructures. Nat. Nanotechnol. 2017, 12, 343-350.
[40]
Kelly, A. G.; Hallam, T.; Backes, C.; Harvey, A.; Esmaeily, A. S.; Godwin, I.; Coelho, J.; Nicolosi, V.; Lauth, J.; Kulkarni, A. et al. All- printed thin-film transistors from networks of liquid-exfoliated nanosheets. Science 2017, 356, 69-73.
[41]
Huan, Y. H.; Shi, J. P.; Zou, X. L.; Gong, Y.; Xie, C. Y.; Yang, Z. J.; Zhang, Z. P.; Gao, Y.; Shi, Y. P.; Li, M. H. et al. Scalable production of two-dimensional metallic transition metal dichalcogenide nanosheet powders using NaCl templates toward electrocatalytic applications. J. Am. Chem. Soc. 2019, 141, 18694-18703.
[42]
Zhang, J.; Wu, J. J.; Guo, H.; Chen, W. B.; Yuan, J. T.; Martinez, U.; Gupta, G.; Mohite, A.; Ajayan, P. M.; Lou, J. Unveiling active sites for the hydrogen evolution reaction on Monolayer MoS2. Adv. Mater. 2017, 29, 1701955.
[43]
Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317, 100-102.
[44]
Li, L.; Qin, Z. D.; Ries, L.; Hong, S.; Michel, T.; Yang, J.; Salameh, C.; Bechelany, M.; Miele, P.; Kaplan, D. et al. Role of sulfur vacancies and undercoordinated Mo regions in MoS2 nanosheets toward the evolution of hydrogen. ACS Nano 2019, 13, 6824-6834.
[45]
Massey, A. T.; Gusain, R.; Kumari, S.; Khatri, O. P. Hierarchical microspheres of MoS2 nanosheets: Efficient and regenerative adsorbent for removal of water-soluble dyes. Ind. Eng. Chem. Res. 2016, 55, 7124-7131.
[46]
Wang, X. H.; Ding, J. J.; Yao, S. W.; Wu, X. X.; Feng, Q. Q.; Wang, Z. H.; Geng, B. Y. High supercapacitor and adsorption behaviors of flower-like MoS2 nanostructures. J. Mater. Chem. A 2014, 2, 15958-15963.
[47]
Li, Y.; Li, H.; Zhou, S.; Yang, H.; Xie, F.; Li, W. J. Preparation and adsorption property of hollow MoS2 microspheres composed of nanoflakes. Res. Chem. Intermed. 2018, 44, 4353-4364.
Nano Research
Pages 3098-3104
Cite this article:
Zhu L, Yang P, Huan Y, et al. Scalable salt-templated directed synthesis of high-quality MoS2 nanosheets powders towards energetic and environmental applications. Nano Research, 2020, 13(11): 3098-3104. https://doi.org/10.1007/s12274-020-2979-2
Topics:

976

Views

32

Crossref

N/A

Web of Science

30

Scopus

5

CSCD

Altmetrics

Received: 13 May 2020
Revised: 09 July 2020
Accepted: 10 July 2020
Published: 27 August 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return